Boundary and Eigenvalue Problems

9. exercise sheet

Exercise 1

Consider the operator

\[Lu := -\partial_i (a^{ij} \partial_j u) + b^i \partial_i u + cu \]

whose coefficients \(a^{ij}, c, b^i \) are assumed to be smooth functions on a bounded domain \(U \subset \mathbb{R}^n \) with smooth boundary. (We use the Einstein sum convention.) Furthermore we assume that \(c \) is non-negative. The coefficients \(a^{ij} \) satisfy a strict ellipticity conditions i.e. there exists \(\lambda > 0 \) such that

\[a^{ij}(x) \xi_i \xi_j \geq \lambda |\xi|^2 \]

for all \(x \in U \) and \(\xi \in \mathbb{R}^n \).

Show that \(Lu = f \) can be solved for any \(f \in L^2 \) (or if you want \(f \in W^{1,2}_0(U) \)).

Exercise 2

We want to show that there is no maximum principle for operators of fourth order. Exemplary consider

\[\Delta \Delta u = 0 \]

on \(B_1 \subset \mathbb{R}^n \).

1. Give an example of a function that attains a strict minimum and/or maximum in the interior but is not constant. (Which would be excluded in case of a maximum principle.)
2. Is the solution to \(\Delta \Delta u = 0 \) unique with \(u = 0 \) on \(\partial B_1 \)?

Exercise 3 (Difference quotient)

We define the difference quotient in direction \(e_i \) by

\[\Delta_i^h u(x) := \frac{u(x + he_i) - u(x)}{h}, \quad h \neq 0. \]

Proof the following statements:

1. Let \(u \in W^{1,p}(U), 1 \leq p \leq \infty \). Then \(\Delta_i^h u(x) \in L^p(U') \) for any \(U' \subset \subset U \) satisfying \(h < \text{dist}(U', \partial U) \) and we have

\[\| \Delta_i^h u \|_{L^p(U')} \leq \| D_i u \|_{L^p(U)}. \]

2. Let \(u \in L^p(U), 1 < p < \infty \) and suppose there exists a constant \(K \) such that \(\Delta_i^h u \in L^p(U') \) and \(\| \Delta_i^h u \|_{L^p(U')} \leq K \) for all \(h > 0 \) and \(U' \subset \subset U \) satisfying \(h < \text{dist}(U', \partial U) \). Then the weak derivative \(D_i u \) exists and satisfies \(\| D_i u \|_{L^p(U)} \leq K \).