
The first lecture is going to be introductory and general. We will briefly explain how partial differ-
ential equations arise in applications and we will give some examples of partial differential equations.
We will derive the heat equation ut � ∆u and the Poisson equation �∆u � f . Time permitting we
will begin with the discussion properties of the Poisson equation and the Laplace equation �∆u � 0.

1 The Laplace and Poisson equation

1.1 Harmonic functions and maximum/minimum Principle

Definition 1.1. Let Ω � Rn be open. A function u P C2pΩq is called a harmonic function in Ω if

∆u :�
°n
j�1

B2u
Bx2j

� 0 in Ω.

For R ¡ 0 and x0 P Rn recall that

BRpx0q :� tx P Rn : |x� x0|   Ru, BBRpx0q :� tx P Rn : |x� x0| � Ru

|BRpx0q| :�

»
BRpx0q

1dx volume of BRpx0q, |BBRpx0q| :�

»
BBRpx0q

1dσx area of BBRpx0q.

Definition 1.2. Gaussian mean value: Let R ¡ 0, x0 P R
n and u : BRpx0q Ñ R continuous. Then

the integrals

mRpx0, uq :�
1

|BBRpx0q|

»
BBRpx0q

upxqdσx,

MRpx0, uq :�
1

|BRpx0q|

»
BRpx0q

upxqdx,

are called the average value of u on the surface ball, respectively the average value of u on the interior
ball.

Theorem 1.3 (Mean value Property for harmonic functions). If u : BRpx0q Ñ R is continuous and
harmonic in BRpx0q then upx0q � mRpx0, uq �MRpx0, uq.

Definition 1.4. An Ω � Rn is called a domain if it is open and connected.

Theorem 1.5 (Maximum and minimum Principle for harmonic functions). Let Ω � Rn be a domain
and u : Ω Ñ R harmonic and not constant. Then u has no maximum or minimum in Ω.

Corollary 1.6. Let Ω � Rn be a bounded domain and u P CpΩq be a harmonic function in Ω. Let
M � maxtupxq : x P Ωu,m � mintupxq : x P Ωu. Then
(i) M � maxtupxq : x P BΩu,m � mintupxq : x P BΩu.
(ii) If u � c P R on BΩ then u � c in Ω.

Corollary 1.7. Let Ω be a bounded domain, g P CpΩq, f P CpBΩq. Then there is at most one function
u P C2pΩq X CpΩq solving the Poisson equation �∆u � g in Ω with the boundary condition u � f on
BΩ.

1.2 Fundamental solution of the Laplace equation

Definition 1.8 (Fundamental solution of the Laplace equation). Let n P N with n ¥ 2. The function
γn : Rn{t0u Ñ R given by

γnpxq �

#
� 1

2π ln |x|, if n � 2
1

pn�2qωn
|x|2�n, if n ¥ 3,

(1)

where ωn � |BB1p0q|, is called fundamental solution of the Laplace equation in Rn.
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Theorem 1.9 (A property of the Fundamental solution of the Laplace equation). Suppose that f P
C2pRnq has compact support. Then
(i)
³
γnpxqp�∆fpxqqdx � fp0q.

(ii) The function upxq � γn � f :�
³
γnpx� yqfpyqdy is a solution of the Poisson equation �∆u � f .

Definition 1.10 (Ck/Lipschitz domains). Let k P N and Ω � Rn be a bounded domain. We say that

Ω is Ck, respectively Lipschitz at x0 P BΩ if there exists r ¡ 0 and a Ck, respectively Lipschitz function
γ : Rn Ñ R such that -upon relabeling and reorienting the coordinate axes if necessary- we have

ΩXBrpx0q � tx P Brpx0q | xn ¡ γpx1, . . . , xn�1qu.

If Ω is Ck, respectively Lipschitz at all its boundary points then it is called a Ck, respectively Lipschitz
domain.

Theorem 1.11 (Green’s Representation formula). Assume that Ω � Rn is a C1 domain and let
u P C2pΩq. If γn is the fundamental solution of the Laplace equation then for all x P Ω we have that

upxq �

»
Ω
γnpx� yqp�∆upyqqdy �

»
BΩ

�
γnpx� yq∇upyq � upyq∇yγnpx� yq

	
� νpyqdσy,

where νpyq is the unit outward normal vector of BΩ at y.

1.3 Green’s functions on bounded domains

Definition 1.12 (Green’s function). Let Ω � Rn be a domain. A function Gpx, yq :� γnpx � yq �
wpx, yq, x � y, x P Ω, y P Ω is called a Green function for the Laplace operator in Ω if:
(i) @x P Ω, wpx, .q P C2pΩq and ∆ywpx, yq � 0 in Ω.
(ii) @x P Ω, y P BΩ we have that Gpx, yq � 0.

Example 1.13 (An important one). Let Ω � tpx1, ..., xnq P Rn : xn ¡ 0u. Then the function
Gpx, yq � γnpx� yq � γnpx� y

�q is a Green’s function for Ω, where for y � py1, ..., yn�1, ynq we define
y� � py1, ..., yn�1,�ynq.

Theorem 1.14 (Corollary of Theorem 1.11). Let Ω � Rn be a C1 domain and assume that G is a
Green’s function in Ω. If u P C2pΩq, then for all x P Ω we have

upxq �

»
Ω
Gpx, yqp�∆upxqq �

»
BΩ
�upyq∇yGpx, yq � νpyqdσy.

Theorem 1.15 (Green’s function for the unit ball). The Green’s function for the ball B1p0q exists for
n ¥ 2 and it is given as follows:

Gpx, yq �

#
γnpy � xq � γnp|x|px

� � yqq if x � 0

γnpyq �
1�δn2
p2�nqωn

, if x � 0,

where for x � 0 we defined x� :� x
|x|2

.

Theorem 1.16. Let u P C2pB1p0qq be a harmonic function with with u � f P CpBB1p0qq on BB1p0q.
Then

upxq �
1� |x|2

ωn

»
BB1p0q

fpyq

|x� y|n
dσy.

Theorem 1.17. Let f P CpBB1p0qq and

upxq �

#
1�|x|2

ωn

³
BB1p0q

fpyq
|x�y|ndσy, if x P B1p0q

fpxq, if x P BB1p0q.

Then u P C2pB1p0qq X CpB1p0qq and u is harmonic in B1p0q (u is called harmonic extension of f at
0).
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2 Elliptic operators and Maximum Principles

2.1 Elliptic operators

Let U � Rn be open and bounded. On the set of functions u : U Ñ R be in C2pUq, we consider a
differential operator L having the form

Lu � �
ņ

i,j�1

aijpxquxixj �
¸
bipxquxi � cpxqu. (2)

for some coefficient functions aij , bi, c. Our aim is to study the boundary value problem#
Lu � f on U

u � 0 on BU.
(3)

We assume from now on, that
aij , bi, c P L8pUq X CpUq. (4)

.

Definition 2.1. We say that the partial differential operator L is (uniformly) elliptic if there exists a
constant θ ¡ 0 such that

ņ

i,j�1

aijpxqξiξj ¥ θ|ξ|2 (5)

for almost all x P U and all ξ P Rn.

This section discusses conditions under which solutions of elliptic boundary value problems attain
their minimum or maximum at the boundary. Below L is the operator given by (2). We will always
assume that aij , bi, c are continuous. Without loss of generality we also assume the symmetry condition
aij � aji, i, j � 1, . . . , n. We also assume that U is open and bounded.

2.2 Weak maximum principles

We will first prove the following preliminary lemma:

Lemma 2.2. If two matrices A,B P Rn�n are symmetric and positive definite then TrpABq ¥ 0.

Theorem 2.3 (Weak maximum principle). Assume that u P C2pUq X CpUq and c � 0 in U .
(i) If Lu ¤ 0 in U then maxxPU upxq � maxxPBU upxq.
(ii) If Lu ¥ 0 in U , then minxPU upxq � minxPBU upxq.

The following theorem is a generalization of the previous when c ¥ 0. We define u� � maxpu, 0q
and u� � �minpu, 0q.

Theorem 2.4 (Weak maximum principle for c ¥ 0). Assume that u P C2pUqXCpUq and c ¥ 0 in U .
(i) If Lu ¤ 0 in U then maxxPU upxq ¤ maxxPBU u

�pxq.
(ii) If Lu ¥ 0 in U , then minxPU upxq ¥ �maxxPBU u

�pxq.
In particular if Lu � 0 in U , then maxxPU |upxq| � maxxPBU |upxq|.
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2.3 Hopf’s lemma

The following lemma has the goal to strengthen the weak maximum principles.

Definition 2.5. Let x0 P BU . We say that U satisfies the interior ball condition at x0 if there is an
open ball B � U such that x0 P BB.

Lemma 2.6 (Hopf’s Lemma). Assume that u P C2pUq XC1pUq. Suppose that Lu ¤ 0 in U , and that
there exists a point x0 P BU such that

upx0q ¡ upxq, @x P U.

Assume that U satisfies the interior ball condition at x0. Then
(i) If c � 0 in U then Bu

Bnpx
0q ¡ 0, where n is the outer unit normal to B.

(ii) If c ¥ 0 in U and upx0q ¥ 0 then the same conclusion holds.

2.4 Strong maximum principles

Theorem 2.7 (Strong maximum principle). Assume that u P C2pUqXCpUq and c � 0 in U . Suppose
also that U is connected open and bounded.

(i) If Lu ¤ 0 in U and u attains its maximum over U at an interior point, then u is constant
within U .

(ii) If Lu ¥ 0 in U and u attains its minimum over U at an interior point, then u is constant
within U .

Theorem 2.8 (Strong maximum principle for c ¥ 0). Assume that u P C2pUq X CpUq and c ¥ 0 in
U . Suppose also that U is connected open and bounded.

(i) If Lu ¤ 0 in U and u attains a nonnegative maximum over U at an interior point, then u is
constant within U .

(ii) If Lu ¥ 0 in U and u attains a nonpositive minimum over U at an interior point, then u is
constant within U .

3 The heat equation in Rn

In this section we will study the initial value problem

utpt, xq � ∆xupt, xq in p0,8q � Rn (6)

up0, xq � gpxq on Rn. (7)

as well as

utpt, xq � ∆xupt, xq � fpt, xq in p0,8q � Rn (8)

up0, xq � gpxq on Rn. (9)

This is the homogeneous respectively inhomogeneous heat equation on Rn with initial condition g and
with source f .
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3.1 The homogeneous case

Our aim is here to find a solution of (6) with f � 0. We will first find the fundamental solution of the
heat equation namely the solution of (6) for g � δ. To this end the following lemma will be useful:

Lemma 3.1. If u : R� Rn Ñ R is a solution of (6) then
(i) uλ,µpt, xq :� µupλ2t, λxq is a solution of (6) as well @λ ¡ 0, µ P R.
(ii) If moreover upt, .q P L1pRnq for all t ¡ 0 then for all λ ¡ 0, uλpt, xq :� λnupλ2t, λxq is a solution
of (6) with

³
uλpt, xqdx �

³
upλ2t, xqdx,@t ¡ 0.

Definition 3.2. A solution of (6) is called self-similar if uλ � u for all λ ¡ 0.

Lemma 3.3. Let u : p0,8q � Rn Ñ R be differentiable with uλ � u for all λ ¡ 0 and with upt, xq �
vpt, |x|q for some function v : p0,8q � r0,8q Ñ R. Then u is a solution of (6) if and only if there
exists c P R such that

upt, xq �
c

t
n
2

e�
|x|2

4t .

In this case we have that
³
Rn upt, xqdx � cp4πq

n
2 .

Definition 3.4. We define the fundamental solution of (6) by

Φpt, xq �
1

p4πtq
n
2

e�
|x|2

4t .

From lemma 3.3 it follows that Φpt, xq is a solution of the heat equation and that
³
Rn Φpt, xqdx � 1

for all t ¡ 0.

Lemma 3.5. If g P CpRnq X L8pRnq then

lim
tÑ0�

»
Rn

Φpt, xqgpxqdx � gp0q.

Theorem 3.6. Assume that g P CpRnq X L8pRnq. Then the function upt, xq �
³
Rn Φpt, x� yqgpyqdy

is a solution of (6)-(7). Moreover u P C8pp0,8q � Rnq.

3.2 The inhomogeneous case f � 0

A function u : p0,8q � Rn pt, xq Ñ upt, xq is defined to be in C1,2pp0,8q � Rnq if it is continuously
differentiable with respect to t and if it is twice continuously differentiable with respect to x

Theorem 3.7. Assume that f P C1,2pp0,8q � Rnq X Cpr0,8q � Rnq is bounded and has bounded
derivatives. Let

upt, xq :�

» t
0

»
Rn

Φpt� s, x� yqfps, yqdyds. (10)

Then u P C1,2pp0,8q � Rnq is a solution of (8) with

lim
px,tqÑpx0,0q,t¡0

upt, xq � 0,@x0 P Rn.

Corollary 3.8. Under the same assumptions for g as in Theorem 3.6 and for f as in Theorem 3.7
the function

upt, xq :�

»
Rn

Φpt, x� yqgpyqdy �

» t
0

»
Rn

Φpt� s, x� yqfps, yqdyds. (11)

is in C1,2pp0,8q � Rnq and is a solution of (8) with

lim
pt,xqÑp0,x0q,t¡0

upt, xq � gpx0q,@x0 P Rn.
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4 Separation of variables

Reminder of Fourier series Let f : R Ñ C be 2π-periodic function, f |r�π,πq integrierbar. the
numbers ak, bk

ak �
1

π

» π
�π
fptq cospktq dt, k P NY t0u, bk �

1

π

» π
�π
fptq sinpktq dt, k P N,

heißen Fourier coefficients of f und the series

a0

2
�

8̧

k�1

ak cospktq �
8̧

k�1

bk sinpktq,

is called Fourier series of f . For any N P N we define SN pfq �
a0
2 �

°N
k�1 ak cospktq �

°N
k�1 bk sinpktq.

Theorem 4.1. Assume that f : R Ñ C is C2 and 2π -periodic. Then SN pfq Ñ f uniformly as
N Ñ8.

Theorem 4.2. Assume that f : RÑ C and 2π -periodic and integrable. Then }SN pfq�f}L2pr�π,πsq Ñ
0 as N Ñ8.

The following examples are application of the ansatz of separation of variables. The assumptions
are not optimal, they are made for simplicity of the proofs and for illustration of the method. We will
also demonstrate how the solutions are computed.

Example 4.3. Let f : RÑ R be C2, odd, 2π-periodic with fp0q � fpπq � 0. Then the problem$'&'%
ut � uxx, pt, xq P p0,8q � p0, πq,

upt, 0q � upt, πq � 0,

up0, xq � fpxq, x P r0, πs,

(12)

has a unique solution in C2pp0,8q�p0, πqqXC2pr0,8q�r0, πsq. This solution is in fact in C8pp0,8q�
r0, πsq.

Example 4.4. Let f : R Ñ R be C4, odd, 2π-periodic with fp0q � fpπq � 0. Let g : R Ñ R have the
same properties except being C3 instead of C4. Then the problem$''''&''''%

utt � uxx, pt, xq P p0,8q � p0, πq,

upt, 0q � upt, πq � 0,

up0, xq � fpxq, x P r0, πs,

utp0, xq � gpxq, x P r0, πs,

(13)

has a unique solution in C2pr0,8q � r0, πsq.

5 The transport and wave equation in Rn

5.1 The (linear) transport equation in Rn

We consider the initial value problem#
ut � b �∇xu � fpt, xq, pt, xq P p0,8q � Rn

up0, xq � gpxq, x P Rn.
(14)

b P Rn, f : p0,8q � Rn Ñ R, g : Rn Ñ R are given and u P C1pr0,8q � Rnq is unknown.
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Theorem 5.1. If f � 0 and g P C1pRnq then the initial value problem (14) has a unique solution in
C1pr0,8q � Rnq. This solution is explicitly given by upt, xq � gpx� btq.

Theorem 5.2. If f P C0,1pr0,8q � Rnq and g P C1pRnq then the initial value problem (14) has a
unique solution in C1pr0,8q � Rnq. This solution is explicitly given by

upt, xq � gpx� btq �

» t
0
fps, x� bpt� sqqds.

5.2 The wave equation in R

We consider the initial value problem$'&'%
utt � c2uxx, pt, xq P p0,8q � R,
up0, xq � gpxq, x P R,
utp0, xq � hpxq, x P R.

(15)

Theorem 5.3. If g P C2pRq and h P C1pRq, then the initial value problem (15) has a unique solution
in C2pr0,8q � Rq, which is explicitly given by

upt, xq �
gpx� ctq � gpx� ctq

2
�

1

2c

» x�ct
x�ct

hpyqdy.

Example 5.4. Let g P C2pr0,8qq, h P C1pr0,8qq. Suppose that gp0q � hp0q � 0 and g2p0q � 0. Then
the boundary initial value problem$''''&''''%

utt � uxx, pt, xq P r0,8q � p0,8q,

upt, 0q � 0, t ¥ 0,

up0, xq � gpxq, x ¥ 0,

utp0, xq � hpxq, x ¥ 0.

(16)

has a unique solution in C2pr0,8q � r0,8qq. This solution is given by

upt, xq �

#
gpx�tq�gpx�tq

2 � 1
2

³x�t
x�t hpyqdy, if x ¥ t ¥ 0,

gpx�tq�gpt�xq
2 � 1

2

³t�x
t�x hpyqdy, if t ¥ x ¥ 0.

(17)

5.3 The wave equation in Rn, n ¥ 2

We consider the initial value problem$'&'%
utt � ∆u, pt, xq P p0,8q � Rn,
up0, xq � gpxq, x P Rn,
utp0, xq � hpxq, x P Rn.

(18)

Spherical averages Let u, g, h be as in (18). We define

Upt, x, rq �
1

ωnrn�1

»
BBrpxq

upt, yqdσy,

F px, rq �
1

ωnrn�1

»
BBrpxq

fpyqdσy,

Hpx, rq �
1

ωnrn�1

»
BBrpxq

hpyqdσy.
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Theorem 5.5. Let u P C2pr0,8q�Rnq be a solution of (18). Let x P Rn. Then Up., x, .q is a solution
of the Euler-Poisson-Darboux equation$'&'%

Utt � Urr �
n�1
r Ur, pt, rq P r0,8q � r0,8q,

Up0, x, rq � Gpx, rq, r P r0,8q,

Utp0, x, rq � Hpx, rq, r P r0,8q.

The case n � 3

Corollary 5.6. Let u P C2pr0,8q � R3q be a solution of (18). Fix x P R3. Then rU � rU solves$'&'%
rUtt � rUrr, pt, rq P r0,8q � r0,8q,rUp0, x, rq � rGpx, rq, r P r0,8q,rUtp0, x, rq � rHpx, rq, r P r0,8q,

where rG � rG, rH � rH.

Theorem 5.7. Let g P C3pR3q and h P C2pR3q. Define on p0,8q � R3

upt, xq :�
1

4πt2

»
BBtpxq

pthpyq � gpyq �∇gpyqpy � xqqdσy. (19)

Then u P C2pp0,8q � R3q, utt � ∆u. Moreover

lim
pt,xqÑp0,x0q,t¡0

upt, xq � gpx0q, lim
pt,xqÑp0,x0q,t¡0

utpt, xq � hpx0q,@x0 P R3.

Furthermore, every solution of (18) (for n � 3) has the form (19).

The case n � 2

Theorem 5.8. Let g P C3pR2q and f P C2pR2q. Define on p0,8q � R2

upt, xq :�
1

2πt

»
Btpxq

pthpyq � gpyq �∇gpyqpy � xqqa
t2 � |x� y|2

dy. (20)

Then u P C2pp0,8q � R2q, and utt � ∆u. Moreover

lim
pt,xqÑp0,x0q,t¡0

upt, xq � gpx0q, lim
pt,xqÑp0,x0q,t¡0

utpt, xq � hpx0q,@x0 P R2.

Furthermore, every solution of (18) (for n � 2) has the form (20).

6 Fourier transform

Definition and some properties of the Fourier transform

Definition 6.1 (Fourier transformation). If f P L1pRnq we define

pfpξq � » e�2πix�ξfpxqdx.

Theorem 6.2. (1) If f, g P L1pRnq, then zf � g � pfpg, where recall that f � gpxq �
³
fpx� yqgpyqdy.

(2) If f P L1 and τafpxq :� fpx� aq and Uafpxq � e2πia�xfpxq, then yτaf � Ua pf , yUaf � τ�a pf .

(3) If T is an invertible linear transformation in Rn, then zf � T pξq � 1
| detT |

pfppT�1q�ξq.
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The class of Schwartz functions

An n-tuple α � pα1, ..., αnq of nonnegative integers will be called a multiindex. We define |α| �°n
j�1 αj , and for x � px1, ...xnq P Rn

xα � xα1
1 xα2

2 ...xαn
n , Bα �

B|α|

Bα1
x1 ...B

αn
xn
.

Definition 6.3. We define the vector space of Schwartz functions S � SpRnq as

SpRnq � tu P C8pRnq : sup
xPRn

|xαBβupxq|   8, for all multiindices α, βu.

More properties of the Fourier transform

Theorem 6.4. Let f P SpRnq and β a multi-index. We define pMβfqpxq :� p2πixqβfpxq. Then

(1) yBβf �Mβ
pf

(2) pf P C8 and Bβ pf � p�1q|β|zMβf , where.

(3) pf P S.

Theorem 6.5 (Riemann-Lebesgue Lemma). If f P L1 then pf is continuous and converges to zero at
infinity.

Theorem 6.6. Let fpxq � e�πa|x|
2
, where a ¡ 0, then pfpξq � a�n{2e�π|ξ|

2{a.

Theorem 6.7. If f, g P SpRnq, then
³
fpg � ³ pfg.

Theorem 6.8 (Fourier inversion formula). If f P S, then fpxq �
³
Rn
pfpξqe2πix�ξdξ.

For f P L1pRnq we define f̌pxq �
³
fpξqe2πix�ξdξ � pfp�xq.

Corollary 6.9.
ˇ̂
f � f � p̌f . Moreover, the Fourier transform is an isomorphism from SpRnq to itself.

Theorem 6.10 (Plancherel Theorem). If f P SpRnq, then } pf}L2 � }f}L2. Moreover, the Fourier
transformation extends uniquely to a unitary isomorphism of L2 onto itself.

7 Maximum Principle for heat equation and Classification of second
order PDEs

Theorem 7.1. Let Ω � Rn be a bounded domain in Rn and 0   T   8. Suppose that u P Cpr0, T s �
Ωq XC1,2pp0, T q �Ωq with ut � ∆xu in p0, T q �Ω. Then u attains its maximum either on t0u �Ω or
on r0, T s � BΩ.

Corollary 7.2. Let f P Cpt0u�Ωq, g P Cpr0, T s � BΩq. There is at most one function u P Cpr0, T s �
Ωq X C1,2pp0, T q � Ωq with ut � ∆xu in p0, T q � Ω, u � f on t0u � Ω and u � g on r0, T s � BΩ.

Let Ω � Rn be open and bounded. For u : Ω Ñ R with u P C2pΩq, we consider a differential
operator L having the form

Lu �
ņ

i,j�1

aijpxquxixj �
¸
bipxquxi � cpxqu, (21)
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for some continuous functions aij , bi, c : Ω Ñ R. Lu is called a partial differential operator of second order.
The partial differential equation

Lupxq � fpxq, x P Ω, (22)

where f : Ω Ñ R continuous, is called a partial differential equation of second order. If u P C2pΩq
then

ņ

i,j�1

aijpxquxixj � TrpApxqD2upxqq,

where

D2upxq :�

�����
ux1x1pxq � � � ux1xnpxq
ux2x1pxq � � � ux2xnpxq

...
...

uxnx1pxq � � � uxnxnpxq

����� � B2u

BxjBxk
pxq
	n
j,k�1

is the Hessian Matrix of u at x and

Apxq :�
�aijpxq � ajipxq

2

	n
j,k�1

.

Definition 7.3. The partial differential equation (22) is called:
(1) Elliptic in x P Ω if all the eigenvalues of Apxq have the same sign.
(2) Parabolic in x P Ω if Apxq has the eigenvalue 0.
(3) Hyperbolic in x P Ω if Apxq has n�1 eigenvalues of the same sign and 1 eigenvalue of the opposite
sign. The partial differential equation (22) is called elliptic/ parabolic/hyperbolic if it is elliptic/
parabolic/hyperbolic in every x P Ω.

8 An introduction to weak derivatives and Sobolev spaces

Some notation
(i) In the entire lecture we denote by U an open subset of Rn. A �� U means that there exists a
compact set K with A � K � U .
(ii) C8

c pUq :� tφ : U Ñ R | φ P C8pUq, and suppφ �� Uu, where suppφ :� tx P U : φpxq � 0u. An
element of C8

c pUq is called a test function.
(iii) For a multi-index is α � pα1, . . . , αnq P pNY t0uqn we define α! �

±n
j�1 αj !.

(v) LplocpUq :� tφ : U Ñ R | φ P LppKq for all K �� Uu.

Definition 8.1 (Weak derivatives). Suppose that u,w P L1
locpUq. We say that w is the αth-weak

partial derivative of u, and write Bαu � v if»
U
uBαφdx � p�1q|α|

»
U
wφdx,@φ P C8

c pUq.

Proposition 8.2 (Uniqueness of weak derivatives). If u P L1
locpUq has a weak derivative then it is

unique.

Definition 8.3 (Sobolev spaces). Let k P N and 1 ¤ p ¤ 8. Then

W k,ppUq :� tu P LppUq | Bαu exists and Bαu P Lp, for all multiindices α, with |α| ¤ ku.

We equip W k,ppUq with the norm }.}Wk,ppUq defined by

}u}Wk,ppUq :�

$&%
�°

|α|¤k }B
αu}pLp

	 1
p
, if p   8

max|α|¤k }B
αu}L8 , if p � 8.

10



Elementary properties of Sobolev spaces

Theorem 8.4 (Completeness). For any k P N and 1 ¤ p ¤ 8 the space pW k,ppUq, }.}Wk,ppUqq is a
Banach space.

Theorem 8.5 (Leibnitz rule). If k P N, 1 ¤ p ¤ 8, u PW k,ppUq and ζ P C8
c pUq, then ζu PW k,ppUq

and for all |α| ¤ k we have

Bαpζuq �
¸
β¤α

�
α

β



BβζBα�βu,

where β ¤ α means βj ¤ αj for all j P t1, . . . , nu, and
�
α
β

�
:� α!

β!pα�βq! .

Lemma 8.6. Let f : R Ñ R, f P C8pRq be such that 0 ¤ f ¤ 1, fpxq � 1 if x ¤ 1 and fpxq � 0 if
x ¥ 2. Define χR : Rn Ñ R with χRpyq � fp|y| � Rq. If u P W k,ppRnq then χRu P W

k,ppRnq for all
R ¡ 0 and limRÑ8 χRu � u in W k,ppRnq.

Lemma 8.7. 1) Let u P L1
locpRnq. Then ηε�u P C

8. Here ηεpxq :� 1
εn ηp

x
ε q with ηpxq :�

#
ke

1
|x|2�1 , if |x|   1

0, if |x| ¥ 1.
,

where k ¡ 0 is chosen such that
³
Rn ηpxqdx � 1.

2) If u P LppRnq, where 1 ¤ p   8, then ηε � u P LppRnq. Moreover }ηε � u}Lp ¤ }u}Lp and
limεÑ0� }ηε � u� u}Lp � 0.

Theorem 8.8 (Approximation by smooth functions). Let k P N and p P r1,8q. If u P W k,ppRnq,
then there exists a sequence of functions um P C8

c pRnq such that um Ñ u in W k,ppRnq.

9 Some tools of functional analysis

Here we will introduce some tools of the functional analysis that we will need to handle the problem of
the drum in the next section. For simplicity we will explain some of the needed tools only for Hilbert
spaces.

Definition 9.1. Let pX, }.}q be a real (respectively complex) Banach space, x P X and xn be a sequence
in x. We say that xn converges weakly to x and we write xn á x , if fpxnq Ñ fpxq for all f : X Ñ R
(respectively f : X Ñ C) linear continuous.

Remark 1. If pX, x., .yq is a Hilbert space then xn á x if and only if xxn, yy Ñ xx, yy for all y P X.

Theorem 9.2. Let pX, x., .yq be a Banach space. Then every weakly convergent sequence in X is
bounded. Moreover, if xn á x then }x} ¤ lim infnÑ8 }xn}.

Theorem 9.3 (Banach-Alaoglu, special case). Let pX, x., .yq be a separable Hilbert space (this means it
has a countable dense subset). Then every bounded sequence in X has a weakly convergent subsequence.

Theorem 9.4. Let pX, x., .yq be a Hilbert space. If xn á x and }xn} Ñ }x}, then xn Ñ x.

Definition 9.5 (Compact operators). Let X,Y be Banach spaces and K : X Ñ Y a linear operator.
K is called compact, if for every bounded sequence xn in X Kxn has a convergent subsequence in Y .

Theorem 9.6. Let X,Y be separable Hilbert spaces, and K : X Ñ Y be a linear operator. Then K is
compact if and only if for any sequence xn in X and any x P X we have xn á x ùñ Kxn Ñ Kx.

Definition 9.7 (W k,p
0 pUq). Let U � Rn open. We denote by W k,p

0 pUq the closure of C8
c pUq in

W k,ppUq.
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Lemma 9.8. If U,W � Rn open with U � W and u P W k,p
0 pUq then the function ru : W Ñ R

rupxq � #upxq, x P U
0, x R U

is in W k,p
0 pW q.

Lemma 9.9. Assume that u PW 1,ppRnq, 1 ¤ p   8. Then

}ηε � u� u}LppRnq ¤ ε}∇u}LppRnq.

Corollary 9.10. If pumqmPN is a bounded sequence in W 1,ppRnq then }um � ηε � um}Lp Ñ 0 as εÑ 0
uniformly in m.

Lemma 9.11. Let U � Rn be open and bounded and W � U � B2p0q. Assume that pumqmPN is
bounded in W 1,p

0 pUq . For any ε P p0, 1q consider the family of functions f εm :� rum � ηε, where rum is

as in Lemma 9.8. Then f εm is in W 1,p
0 pW q X CpW q and it is bounded and equicontinuous in CpW q.

Theorem 9.12 (Arzela Ascoli, special case). Let K � Rn compact and CpKq � tf : K Ñ C, f continuous u
equipped with the norm }f} � maxt|fpxq| : x P Ku. If F � CpKq is bounded and equicontinuous then
every sequence in F has a subsequence that is convergent in CpKq.

Theorem 9.13 (Special case of Rellich-Kondrachov Compactness). Assume that U � Rn is bounded
and open. Then the identity map i : W 1,p

0 pUq Ñ LppUq, where 1 ¤ p   8, is compact.

10 Application to the equations utt � ∆u, ut � ∆u on bounded do-
mains with Dirichlet boundary conditions

Let U � Rn open and bounded and let X :� tu PW 1,2
0 pUq : }u}L2pUq � 1u. We consider the functional

E : X Ñ R, Epuq �
³
U |∇u|

2dx. We are going to show that:

Theorem 10.1. The functional E has always a minimizer u0 P X.

Theorem 10.2. If u0 P X is a minimizer of E, then �∆u0 � Epu0qu0, where the last equality is in
the sense of weak derivatives.

Lemma 10.3. Let u0 P X be a minimizer of E. Then E|XXtu0uK has a minimizer u1 and �∆u1 �
Epu1qu1.

Remark 2. The orthogonal complement can be understood either in the L2 sense or in the W 1,2
0 sense,

namely the two complements are the same.

Theorem 10.4. The eigenvectors of the Laplacian in W 1,2
0 pUq form an orthonormal basis of L2pUq.

We will explain why this verifies the validity of the ansatz of separation of variables for the equation
of a drum and the heat equation on U with Dirichlet boundary conditions.

Lemma 10.5. If U � V then the minimum of E on U is bigger or equal than the minimum of E on
V .

As we will explain this can be interpreted in the way: ”A big drum has a lower sound than a small
drum”.
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