The first lecture is going to be introductory and general. We will briefly explain how partial differ-
ential equations arise in applications and we will give some examples of partial differential equations.
We will derive the heat equation u; = Awu and the Poisson equation —Awu = f. Time permitting we
will begin with the discussion properties of the Poisson equation and the Laplace equation —Awu = 0.

1 The Laplace and Poisson equation

1.1 Harmonic functions and maximum /minimum Principle

Definition 1.1. Let Q < R" be open. A function u € C%(Q) is called a harmonic function in Q if
Au:=3S" 2o —0in Q.
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For R > 0 and xg € R™ recall that

Br(zg) :={z e R": |x — 9| < R}, 0Bpg(xg) :={zxeR": |z — x| = R}

Baeo)] = |

1dz volume of Br(xo), |0Bgr(xo)|:= J ldoy area of 0BRr(xo).
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Definition 1.2. Gaussian mean value: Let R > 0,29 € R™ and u : Br(xg) — R continuous. Then

the integrals
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are called the average value of u on the surface ball, respectively the average value of u on the interior
ball.

mR(flf(),’U,) : u(x)dax,

Mpg(zg,u) : u(x)dz,

Theorem 1.3 (Mean value Property for harmonic functions). If u : Br(zg) — R is continuous and
harmonic in Br(xg) then u(xzg) = mg(xg,u) = Mg(xg,u).

Definition 1.4. An Q c R" is called a domain if it is open and connected.

Theorem 1.5 (Maximum and minimum Principle for harmonic functions). Let Q@ < R™ be a domain
and u : Q) — R harmonic and not constant. Then u has no maximum or minimum in .

Corollary 1.6. Let Q < R" be a bounded domain and v € C(Q2) be a harmonic function in Q. Let
M = max{u(z) : z € Q},m = min{u(z) : x € Q}. Then

(i) M = max{u(x) : x € 00}, m = min{u(z) : x € IN}.

(ii) If u =ceR on 0Q then u = ¢ in .

Corollary 1.7. Let Q2 be a bounded domain, g € C(2), f € C(0). Then there is at most one function
ue C?(Q) n C(Q) solving the Poisson equation —Au = g in Q with the boundary condition u = f on
00.

1.2 Fundamental solution of the Laplace equation

Definition 1.8 (Fundamental solution of the Laplace equation). Let n € N with n = 2. The function

T : R"/{0} - R given by
—Ln|z|, ifn=2
() = { “ (1)

(n—2)wn |$|2in’ ifn =3,

where w, = |0B1(0)|, is called fundamental solution of the Laplace equation in R™.




Theorem 1.9 (A property of the Fundamental solution of the Laplace equation). Suppose that f €
C?(R™) has compact support. Then

(i) § (@) (=Af(z))dz = f(0).
(1) The function u(z) = v = f 1= {yn(z — y) f(y)dy is a solution of the Poisson equation —Au = f.
Definition 1.10 (C*/Lipschitz domains). Let k € N and Q ¢ R™ be a bounded domain. We say that

Q is C*, respectively Lipschitz at xo € 0SY if there exists r > 0 and a C*, respectively Lipschitz function
v : R™ > R such that -upon relabeling and reorienting the coordinate axes if necessary- we have

QN By(xg) ={x € By(xg) | xn>(x1,. ., Tn-1)}

If Q is C*, respectively Lipschitz at all its boundary points then it is called a C*, respectively Lipschitz
domain.

Theorem 1.11 (Green’s Representation formula). Assume that Q@ < R" is a Ct domain and let
we C*Q). If v, is the fundamental solution of the Laplace equation then for all x € Q we have that

u(r) = L Yn(z — y)(—Au(y))dy + LQ ('Vn(x —y)Vuly) — uw(y)Vyrn(z — y)) - v(y)doy,

where v(y) is the unit outward normal vector of 02 at y.

1.3 Green’s functions on bounded domains

Definition 1.12 (Green’s function). Let < R™ be a domain. A function G(x,y) = v(z — y) +
w(z,y),z #y,x€Q,yeQ is called a Green function for the Laplace operator in Q if:

(i) Vx € Q,w(x,.) € C*(Q) and Ayw(z,y) =0 in Q.

(ii) Vx € Q,y € 0Q we have that G(x,y) = 0.

Example 1.13 (An important one). Let Q@ = {(z1,...,x,) € R" : x,, > 0}. Then the function
G(x,y) = Yulx —y) + (x —y*) is a Green’s function for Q, where for y = (y1, ..., Yn—1, Yn) we define
y* = (yl; e Yn—1, _yn)-

Theorem 1.14 (Corollary of Theorem 1.11). Let Q < R™ be a C! domain and assume that G is a
Green’s function in Q. If u € C?(Q), then for all x € Q we have

u(zx) = J G(x,y)(—Au(z)) + f —u(y)VyG(z,y) - v(y)doy.
Q ZlY)

Theorem 1.15 (Green’s function for the unit ball). The Green’s function for the ball B1(0) exists for
n = 2 and it is given as follows:
1_677,2

G(x,y) = .
( ) {'Vn(y) T 2=n)wn’ if v =0,

where for x # 0 we defined x* := 5.

|2
Theorem 1.16. Let u € C?(B1(0)) be a harmonic function with with u = f € C(0B1(0)) on 0B1(0).

fhen 1 Jaf? f(v)
N Y
-0,

Wn By [z —ylm

Yy — ) = W(l2|(z* —y)) fx # 0

Theorem 1.17. Let f € C(0B1(0)) and
1;|f| SaBl(o) |xf£Z)|n doy, if x € B1(0)
f(x), Zf.%' € 631(0)

Then u € C%(B1(0)) n C(B1(0)) and u is harmonic in B1(0) (u is called harmonic extension of f at
0).

u(x) =



2 Elliptic operators and Maximum Principles

2.1 Elliptic operators

Let U = R"™ be open and bounded. On the set of functions u : U — R be in C?(U), we consider a
differential operator L having the form

n

Lu=— Z aij(fn)umﬁj + sz(a:)uxl + c(x)u. (2)

ij=1

for some coefficient functions a™, b, c. Our aim is to study the boundary value problem

Lu=fonU 3)
u =0 on oU.
We assume from now on, that o
a’ ', ce L*(U) n C(U). (4)

Definition 2.1. We say that the partial differential operator L is (uniformly) elliptic if there ezists a
constant 8 > 0 such that

D a(x)&g; = 0l (5)
i,j=1

for almost all t € U and all £ € R™.

This section discusses conditions under which solutions of elliptic boundary value problems attain
their minimum or maximum at the boundary. Below L is the operator given by (2). We will always
assume that a%, b’ ¢ are continuous. Without loss of generality we also assume the symmetry condition
a’ =al i, =1,...,n. We also assume that U is open and bounded.

2.2 Weak maximum principles

We will first prove the following preliminary lemmas:
Lemma 2.2. If two matrices A, B € R™"™ are symmetric and positive definite then Tr(AB) = 0.

Theorem 2.3 (Weak maximum principle). Assume that u € C*(U) nC(U) and ¢ =0 in U.
(i) If Lu < 0 in U then max ; u(r) = maxzepy u(z).
(i) If Lu = 0 in U, then min 5 u(x) = mingcor u(z).

The following theorem is a generalization of the previous when ¢ > 0. We define u* = maz(u,0)
and v~ = —min(u,0).

Theorem 2.4 (Weak maximum principle for ¢ = 0). Assume that ue C*(U) nC(U) and ¢ = 0 in U.
(i) If Lu < 0 in U then max, g u(x) < maxzesr u™ (2).
(it) If Lu > 0 in U, then min_;u(x) > —max,coy u ().
In particular if Lu = 0 in U, then max 7 |u(z)| = maxeov |u(z)|.



2.3 Hopf’s lemma

The following lemma has the goal to strengthen the weak maximum principles.

Definition 2.5. Let 2° € 0U. We say that U satisfies the interior ball condition at x° if there is an
open ball B ¢ U such that 2° € 0B.

Lemma 2.6 (Hopf’s Lemma). Assume that u € C*(U) n CY(U). Suppose that Lu < 0 in U, and that
there exists a point z° € oU such that

u(z®) > u(z), Vzel.

Assume that U satisfies the interior ball condition at z°. Then
(i) If c=0 in U then S—Z(xo) > 0, where n is the outer unit normal to B.
(ii) If ¢ = 0 in U and u(z®) = 0 then the same conclusion holds.

2.4 Strong maximum principles

Theorem 2.7 (Strong maximum principle). Assume that u € C*(U)nC(U) and ¢ =0 in U. Suppose
also that U is connected open and bounded.

(i) If Lu < 0 in U and u attains its mazimum over U at an interior point, then u is constant
within U.

(ii) If Lu = 0 in U and u attains its minimum over U at an interior point, then u is constant
within U.

Theorem 2.8 (Strong maximum principle for ¢ > 0). Assume that u € C*(U) n C(U) and ¢ = 0 in
U. Suppose also that U is connected open and bounded.

(i) If Lu < 0 in U and u attains a nonnegative maximum over U at an interior point, then u is
constant within U.

(ii) If Lu > 0 in U and u attains a nonpositive minimum over U at an interior point, then u is
constant within U.

3 The heat equation in R"

In this section we will study the initial value problem

u(t, x) = Ayu(t,z) in (0,00) x R™ (6)
u(0,z) = g(z) on R™. (7)
as well as
ug(t, ) = Agu(t,x) + f(t,x) in (0,00) x R" (8)
u(0,z) = g(z) on R™. (9)

This is the homogeneous respectively inhomogeneous heat equation on R™ with initial condition g and
with source f.



3.1 The homogeneous case

Our aim is here to find a solution of (6) with f = 0. We will first find the fundamental solution of the
heat equation namely the solution of (6) for g = §. To this end the following lemma will be useful:

Lemma 3.1. Ifu: R x R" — R is a solution of (6) then

(i) unu(t, ) := pu(N2t, \z) is a solution of (6) as well YA >0, u € R.

(i3) If moreover u(t,.) € L*(R™) for all t > 0 then for all A > 0, uy(t,z) := A\"u(N\*t, \x) is a solution
of (6) with Sux(t,x)dz = §u(\?t, z)dx,Vt > 0.

Definition 3.2. A solution of (6) is called self-similar if uy = u for all A > 0.

Lemma 3.3. Let u: (0,00) x R™ — R be differentiable with uy = u for all X\ > 0 and with u(t,x) =
v(t, |x|) for some function v : (0,00) x [0,00) — R. Then u is a solution of (6) if and only if there
exists c € R such that

u(t,x) = ine it .
t2
In this case we have that §p, u(t, z)dz = c(4m)z.
Definition 3.4. We define the fundamental solution of (6) by
1 ||
O(t,r) = —e 4.
(4mt)2
From lemma 3.3 it follows that ®(¢,z) is a solution of the heat equation and that {3, ®(¢, z)dz =1
for all ¢ > 0.

Lemma 3.5. If g e C(R™) n L®(R") then

AR Jp, B9 =90

Theorem 3.6. Assume that g € C(R™) n L®(R™). Then the function u(t,z) = {5, ®(t,z — y)g(y)dy
is a solution of (6)-(7). Moreover u e C*((0,00) x R™).

3.2 The inhomogeneous case f # 0

A function u : (0,00) x R™ (t,2) — u(t,z) is defined to be in C12((0,00) x R™) if it is continuously
differentiable with respect to ¢t and if it is twice continuously differentiable with respect to x

Theorem 3.7. Assume that f € CH2((0,0) x R?) n C(]0,0) x R") is bounded and has bounded
derivatives. Let

t
u(t,x) = f J O(t —s,x —y)f(s,y)dyds. (10)
0 n
Then u e C12((0,00) x R™) is a solution of (8) with

lim u(t,z) = 0,Vxg € R™.
(z,t)—(20,0),t>0

Corollary 3.8. Under the same assumptions for g as in Theorem 3.6 and for f as in Theorem 3.7
the function

t
u(t.a)i= | @ta gy + [ [ 8= sy (s )y, (1)
n 0 n
is in C12((0,00) x R™) and is a solution of (8) with

I t.7) = g(x0), Yo € R™.
tay o Ul @) = g(@0), Vo



4 Separation of variables

Reminder of Fourier series Let f : R — C be 27-periodic function, f |[—7r77r) integrierbar. the
numbers ay, by,
1 (" 1 ("
ar = — f(t)cos(kt)dt, ke Nu {0}, by =— f(t)sin(kt)dt, k € N,
s ™J_n

™ J_

heiflen Fourier coefficients of f und the series

+ Z ay, cos(kt) Z by, sin(kt),

is called Fourier series of f. For any N € N we define Sy(f) = 4 + 2/?:1 a, cos(kt) + 22\721 by, sin(kt).

Theorem 4.1. Assume that f : R — C is C? and 27 -periodic. Then Sn(f) — f uniformly as
N — 0.

Theorem 4.2. Assume that f : R — C and 27 -periodic and integrable. Then |Sn(f)— f|r2([=n.)) —
0 as N — o0.

The following examples are application of the ansatz of separation of variables. The assumptions
are not optimal, they are made for simplicity of the proofs and for illustration of the method. We will
also demonstrate how the solutions are computed.

Example 4.3. Let f : R — R be C?, odd, 2r-periodic with f(0) = f(x) = 0. Then the problem

Ut = Ugy, (t,J)) € (07 (XD) X (077[-)7
u(t,0) = u(t,m) =0, (12)
uw(0,z) = f(z), z€]|0,n7],
has a unique solution in C*((0,00) x (0, 7)) NC?([0,0) x [0, 7]). This solution is in fact in C*((0, 0) x
[0, 7]).

Example 4.4. Let f: R — R be C*, odd, 27-periodic with f(0) = f(r) = 0. Let g: R — R have the
same properties except being C3 instead of C*. Then the problem

Utt = Uz, (t )E ( ) x (077T)7
u(t,0) = uft, ) =0,

(13)
u(0,z) = f(z), xe[0,7],
ut(O,:c)—g( )7 .’EE[O,T{'],
has a unique solution in C2([0,00) x [0,7]).
5 The transport and wave equation in R"
5.1 The (linear) transport equation in R”
We consider the initial value problem
ur+b-Vyu= f(t,z), (t,x)e (0,00) xR" (14)
u(0,z) = g(x), xeR™

beR™ f:(0,0) x R" - R, g: R"” - R are given and u € C*([0,0) x R™) is unknown.



Theorem 5.1. If f = 0 and g € CY(R") then the initial value problem (14) has a unique solution in
CL([0,00) x R™). This solution is explicitly given by u(t,x) = g(x — bt).

Theorem 5.2. If f € C%1([0,0) x R") and g € C*(R") then the initial value problem (14) has a
unique solution in C1([0,00) x R™). This solution is explicitly given by

u(t,x) = g(x — bt) + JO f(s,z —b(t — s))ds.

5.2 The wave equation in R
We consider the initial value problem
U = gy, (t, 7)€ (0,00) x R,

u(0,z) = g(z), x€eR, (15)
ut(0,2) = h(z), zeR.

Theorem 5.3. If g € C%(R) and h € C1(R), then the initial value problem (15) has a unique solution
in C?([0,00) x R), which is explicitly given by

glx+ct)y+glx—ct) 1 J“Ct
_l’_ N
2 2c

u(t,x) = h(y)dy.

x—ct
Example 5.4. Let g € C%([0,0)),h € C1([0,00)). Suppose that g(0) = h(0) = 0 and ¢g"(0) = 0. Then
the boundary initial value problem
U = Ugg, (t,x) € [0,00) x (0, 0),
u(t,0) =0, t=0,

(16)
u(0,z) = g(x), =0,
ut(0,2) = h(z), x>=0.
has a unique solution in C2([0,00) x [0,00)). This solution is given by
m QSI’H (y)dy, ifz >t 0,
(£:2) = 4 gost)mglt=o) | 1 yie - (17)
S+ g L hy)dy, ift =2 > 0.

5.3 The wave equation in R", n > 2
We consider the initial value problem

Utt = Au7 (tv .%') € (07 OO) x Rna
w(0,7) = g(z), zeR, (18)
ut(0,2) = h(z), zeR™

Spherical averages Let u, g, h be as in (18). We define

1
Ut,z,r) = J u(t, y)doy,
( ) wyrn 1 4B, (x) (t-v)doy
1
F(x,r) = J fy)do,,
(z,7) wyrn—l 0B, () (w)dor
1
H(x,r) = J h(y)do,.
(@,7) w1 4B, () (w)doy



Theorem 5.5. Let u € C%([0,0) x R") be a solution of (18). Let x € R™. Then U(.,x,.) is a solution
of the Euler-Poisson-Darboux equation

Utt = UT’T‘ + nTilUTw (ta T) € [07 w) X [07 00)7
U0,z,r) = G(z,r), re[0,0),
Ui(0,z,7) = H(z,r), 7 €][0,00).

The case n =3

Corollary 5.6. Let u e C2([0,0) x R3) be a solution of (18). Fiz x € R3. Then U = rU solves
ﬁtt = [77'7’7 ( ) ) € [O OO) [0,00),
U(0,z,r) = G(z,r), rel0,00),
U:(0,2,7) = H(z,7), 7r€]0,0),

where G = rG,ﬁI =rH.

Theorem 5.7. Let g € C3(R3) and h € C*(R3). Define on (0,00) x R3

1
uto)i= o [ )+ 9l) + Vel — 2)doy, (19)
47t dBy(z)
Then u € C?((0,00) x R3), uy = Au. Moreover
1i = li = R3.
(t,x)ﬁ(IOIgo),t>0u(t’ z) = g(xo), (t,x)a(l(]r,ralso),t>0 w(t, ) = h(zo), Yo €

Furthermore, every solution of (18) (for n = 3) has the form (19).

The case n = 2

Theorem 5.8. Let g € C3(R?) and f € C?(R?). Define on (0,0) x R?

1 th —
u(t,z) = J (th(y) +9(y) + Va(y)(y w))dy_ (20)

2t Bi(x) ‘/t2—|ﬂf—y|2

Then u e C?((0,0) x R?), and uy = Au. Moreover
li t,x) = li t,x) = h(zo), Vzo € R?.
(t,z)ﬁ(lor,‘ralco),t>OU( /@) g($0)7(t,x)a(1(3rgo),t>OUt( /@) = Mao), Yo €
Furthermore, every solution of (18) (for n = 2) has the form (20).
6 Fourier transform
Definition and some properties of the Fourier transform
Definition 6.1 (Fourier transformation). If f € L*(R") we define
fle) = [ e

Theorem 6.2. (1) If f,g € L'(R"), then f * g = fg, where recall that f * g(x Sf x—1y)g(y)dy.

(2) If f € L' and 1uf(z) := f(z + a) and Upf(z) = €274 f(z), then Taf U, f, Uaf f—T_af
(8) If T is an invertible linear transformation in R™, then f/\T(f) ot T|f(( hyxg).,



The class of Schwartz functions

An n-tuple o = (a1, ...,a,) of nonnegative integers will be called a multiindex. We define || =
>i_ aj, and for @ = (1,..2,) € R”

oled

a Q1,02 g0n A0
(03 Qn °
Ozt .0z

T =TTyt Ty,

Definition 6.3. We define the vector space of Schwartz functions S = S(R™) as

S(R") = {ue C®(R") : sup |:U°‘(?Bu(:1:)| < o, for all multiindices o, B}.

zeR™

More properties of the Fourier transform

Theorem 6.4. Let f € S(R®) and B a multi-index. We define (Mgf)(x) := (2miz)’ f(z). Then

(1) Pf = Msf -
(2) feC® and 3°f = (—1)PIMsf, where.
(3) fes.

Theorem 6.5 (Riemann-Lebesgue Lemma). If f € L' then f 18 continuous and converges to zero at
infinity.

Theorem 6.6. Let f(z) = e ™2 where a > 0, then f(£) = a /2 lEl"/a,
Theorem 6.7. If f,g € S(R™), then § fg = ng
Theorem 6.8 (Fourier inversion formula). If f € S, then f(z) = {3, J? (6)e2miTe e,
For f e L'(R") we define f(z) = { f(&)e2m@8de = f(—x).
Corollary 6.9. fz f= f Moreover, the Fourier transform is an isomorphism from S(R™) to itself.

Theorem 6.10 (Plancherel Theorem). If f € S(R"), then H]?HLQ = ||f|z2. Moreover, the Fourier
transformation extends uniquely to a unitary isomorphism of L? onto itself.

7 Maximum Principle for heat equation and Classification of second
order PDEs

Theorem 7.1. Let Q < R" be a bounded domain in R"™ and 0 < T < 0. Suppose that ue C(|0,T] x
Q) nCH2((0,T) x Q) with ug = Agu in (0,T) x Q. Then u attains its mazimum either on {0} x Q or
on [0,T] x of2.

Corollary 7.2. Let f € C({0} x Q), g€ C([0,T] x Q). There is at most one function u € C([0,T] x
Q) N CL2((0,T) x Q) with ug = Agu in (0,T) x Q, u= f on {0} x Q and u = g on [0,T] x 9.

Let © c R"™ be open and bounded. For u : @ — R with u € C?(Q), we consider a differential
operator L having the form

n

Lu = Z aij(m)uxixj + Zb’(m)u% + c(z)u, (21)

ij=1



for some continuous functions a™, b’, ¢ : Q — R. Lu is called a partial differential operator of second order.
The partial differential equation

Lu(z) = f(z), z€qQ, (22)

where f :  — R continuous, is called a partial differential equation of second order. If u € C%(Q)
then

N a¥(@)uge; = Tr(A(z)D?u(x)),
ig—1

where
Upyzy (T) 200 Uy, (T)
D2u(x) o uz2$1(37) u$2$n(w) _ ( 0%u - )”
o : : ~ \Qz;0my k=1

is the Hessian Matrix of v at x and
a(x) + a’'(x) )”

Alw) := ( 2 jk=1"

Definition 7.3. The partial differential equation (22) is called:

(1) Elliptic in x € Q if all the eigenvalues of A(x) have the same sign.

(2) Parabolic in x € Q if A(x) has the eigenvalue 0.

(8) Hyperbolic in x € Q if A(x) has n—1 eigenvalues of the same sign and 1 eigenvalue of the opposite
sign. The partial differential equation (22) is called elliptic/ parabolic/hyperbolic if it is elliptic/
parabolic/hyperbolic in every x € Q.

8 An introduction to weak derivatives and Sobolev spaces

Some notation

(i) In the entire lecture we denote by U an open subset of R". A cc U means that there exists a
compact set K with Ac K c U.

(ii) CPU) :={¢p: U >R | p € C*(U), and supp ¢ cc U}, where supp ¢ := {x € U : ¢(x) # 0}. An
element of C(U) is called a test function.

(ili) For a multi-index is o = (a1, ..., a,) € (NU {0})" we define o! = [7_; a;!.

(v) IP (U):={¢:U >R | ¢pe LP(K) for all K cc U}.

loc

Definition 8.1 (Weak derivatives). Suppose that u,w € L} (U). We say that w is the ath-weak
partial derivative of u, and write 0“u = v if

f ud®pdr = (—1)a|f wodz, Yo € CP(U).
U U

1

Proposition 8.2 (Uniqueness of weak derivatives). If u € L;

UnNIqUE.

(U) has a weak derivative then it is

Definition 8.3 (Sobolev spaces). Let ke N and 1 < p < 0. Then
WHEP(U) := {ue LP(U) | 0% exists and é%u € LP, for all multiindices o, with |a| < k}.

We equip W*P(U) with the norm I-lwr.p(wy defined by

1
_ ) (S lo®ult,)” i p < o0

HUHW’W(U) : _
max|q|<k |0“ul =, if p = 0.

10



Elementary properties of Sobolev spaces

Theorem 8.4 (Completeness). For any k € N and 1 < p < o the space (WHP(U), I-lwer@ry) is a
Banach space.

Theorem 8.5 (Leibnitz rule). Ifke N, 1 < p < oo, ue WFP(U) and ( € CP(U), then (u € WEP(U)

and for all |o| < k we have
« _
0“(Cu) = ) ( ﬁ)aﬁgaa Bu,

B<a

ol

where B < a means B; < a; for all je {1,...,n}, and (g) = FasA

Lemma 8.6. Let f : R > R, fe CP(R) be such that 0 < f <1, f(z) =1ifx <1 and f(x) =0 if
x> 2. Define xg : R* — R with xr(y) = f(ly| — R). If ue WEP(R") then xgu € WFP(R™) for all
R >0 and limp_,c xgu = u in WEP(R"),

1
kel=lP=1 if |z| < 1

Lemma 8.7. 1) Letu € L}, (R"). Thennexue C®. Herene(z) := -n(%) withn(z) := {0 m
, of x| = 1.

where k > 0 is chosen such that §p, n(z)dz = 1.
2) If u € LP(R™), where 1 < p < 0, then ne = u € LP(R™). Moreover |ne = ul|pe < ||jullrr and
lime 04 [|7e * w — u|r = 0.

Theorem 8.8 (Approximation by smooth functions). Let k € N and p € [1,00). If u € WFP(R?),
then there exists a sequence of functions u,, € CX(R™) such that u,, — u in WHP(R™).

9 Some tools of functional analysis

Here we will introduce some tools of the functional analysis that we will need to handle the problem of
the drum in the next section. For simplicity we will explain some of the needed tools only for Hilbert
spaces.

Definition 9.1. Let (X, |.|) be a real (respectively complex) Banach space, x € X and x,, be a sequence
in x. We say that x,, converges weakly to x and we write x,, — x , if f(xn) — f(z) forall f: X > R
(respectively f : X — C) linear continuous.

Remark 1. If (X, {.,.)) is a Hilbert space then x,, — x if and only if {xn,y) — {x,y) for ally € X.

Theorem 9.2. Let (X,{.,.)) be a Banach space. Then every weakly convergent sequence in X is
bounded. Moreover, if x, — x then ||z| < liminf, o |z, ].

Theorem 9.3 (Banach-Alaoglu, special case). Let (X, {.,.)) be a separable Hilbert space (this means it
has a countable dense subset). Then every bounded sequence in X has a weakly convergent subsequence.

Theorem 9.4. Let (X,<{.,.)) be a Hilbert space. If x, — = and ||z,| — ||z|, then x,, — =.

Definition 9.5 (Compact operators). Let X,Y be Banach spaces and K : X — Y a linear operator.
K is called compact, if for every bounded sequence x,, in X Kx, has a convergent subsequence in 'Y .

Theorem 9.6. Let X, Y be separable Hilbert spaces, and K : X — 'Y be a linear operator. Then K is
compact if and only if for any sequence x,, in X and any x € X we have x, -~ r — Kz, — Kzx.

Definition 9.7 (WFP(U)). Let U ¢ R™ open. We denote by WEP(U) the closure of CP(U) in
WhP(U).
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Lemma 9.8. If U W < R" open with U ¢ W and u € Wéc’p(U) then the function @ : W — R

iz = {g(i);] U i W),

Lemma 9.9. Assume that u e WP(R"), 1 < p < 0. Then
e % 4 — ul oy < el Val oy,

Corollary 9.10. If (um)men 45 a bounded sequence in WEP(R™) then |y, * Ne — U r — 0 as e — 0
uniformly in m.

Lemma 9.11. Let U < R™ be open and bounded and W = U + By(0). Assume that (tm)meN S
bounded in Wol’p(U) . For any € € (0,1) consider the family of functions ff, := U, * ne, where Uy, is
as in Lemma 9.8. Then ff, is in Wol’p(W) N C(W) and it is bounded and equicontinuous in C(W).

Theorem 9.12 (Arzela Ascoli, special case). Let K < R"™ compact and C(K) = {f : K — C, f continuous }
equipped with the norm | f| = max{|f(z)| : x € K}. If F < C(K) is bounded and equicontinuous then
every sequence in F' has a subsequence that is convergent in C(K).

Theorem 9.13 (Special case of Rellich-Kondrachov Compactness). Assume that U < R™ is bounded
and open. Then the identity map i : Wol’p(U) — LP(U), where 1 < p < w0, is compact.

10 Application to the equations u; = Au, u; = Au on bounded do-
mains with Dirichlet boundary conditions

Let U < R™ open and bounded and let X := {u € Wol’z(U) t [ull L2y = 1}. We consider the functional
E: X >R, E(u) = §;;|Vu|*dz. We are going to show that:

Theorem 10.1. The functional E has always a minimizer ug € X.

Theorem 10.2. If ug € X is a minimizer of E, then —Aug = E(ug)ug, where the last equality is in
the sense of weak derivatives.

Lemma 10.3. Let ug € X be a minimizer of E. Then E|x g, has a minimizer uy and —Auy =
E(uy)uy.

Remark 2. The orthogonal complement can be understood either in the L? sense or in the I/Vol’2 sense,
namely the two complements are the same.

Theorem 10.4. The eigenvectors of the Laplacian in Wol’Q(U) form an orthonormal basis of L*(U).

We will explain why this verifies the validity of the ansatz of separation of variables for the equation
of a drum and the heat equation on U with Dirichlet boundary conditions.

Lemma 10.5. IfU < V then the minimum of E on U 1is bigger or equal than the minimum of E on
V.

As we will explain this can be interpreted in the way: ” A big drum has a lower sound than a small
drum”.
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