Functional analysis

Solutions to 3. Exercise Sheet

Exercise 1 (Hausdorff metric)

We denote with \(\mathcal{A} \) the set of all nonempty closed and bounded subsets of \(\mathbb{R}^d \).

1. Show that the map \(d_H(A_1, A_2) := \inf \{ \rho > 0 : A_1 \subseteq B_\rho(A_2) \text{ and } A_2 \subseteq B_\rho(A_1) \} \) for \(A_1, A_2 \in \mathcal{A} \), where \(B_\rho(A) := \{ x \in \mathbb{R}^d : \text{dist}(x, A) < \rho \} \) for nonempty \(A \subseteq \mathbb{R}^d \), is a metric on \(\mathcal{A} \), i.e. \((\mathcal{A}, d_H) \) is a metric space.

2. Show that the set \(K := \{ A \in \mathcal{A} : A \subseteq B_\rho(0) \} \) is compact in \((\mathcal{A}, d_H) \).

Solution of Exercise 1

2. We can prove easily a much more general result if we denote for a nonempty set \(M \subseteq \mathbb{R}^d \) the set \(K(M) := \{ A \in \mathcal{A} : A \subseteq M \} \).

We split our proof in two lemmas:

Lemma 1. (Extension Lemma) Let \((A_n)_{n \in \mathbb{N}} \subseteq \mathcal{A} \) be a Cauchy-sequence in \(K(M) \) and let \((n_k)_{k \in \mathbb{N}} \subseteq \mathbb{N} \) be a strictly monotone increasing sequence. If \((x_{n_k})_{k \in \mathbb{N}} \subseteq \mathbb{R}^d \) is a Cauchy-sequence with \(x_{n_k} \in A_{n_k} \) for all \(k \in \mathbb{N} \), then there is a Cauchy-sequence \((y_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}^d \) with \(y_n \in A_n \) for all \(n \in \mathbb{N} \) and \(y_{n_k} = x_{n_k} \) for all \(k \in \mathbb{N} \).

Lemma 2. If the set \(M \) is in addition totally bounded/ complete/ compact the set \(K(M) \) is also totally bounded/ complete/ compact.

Proof: (1) Let \(M \) be totally bounded and let \(\varepsilon \) be positive. Then we find finite many elements \(x_1, \ldots, x_n \in M \) with

\[
\min_{i=1, \ldots, n} |x_i| < \varepsilon \text{ for all } x \in M.
\]

Let \(A \in K(M) \) be arbitrary and set \(S_A := \{ x_i : \text{dist}(x_i, A) < \varepsilon \} \), then we have

\[
d_H(S_A, A) < \varepsilon.
\]

This implies

\[
K(M) \subseteq \bigcup_{i=1}^{n} B_\varepsilon([x_i]),
\]

i.e. \(K(M) \) is totally bounded.

(2) Let \(M \) be complete and \((A_n)_{n \in \mathbb{N}} \subseteq K(M) \) be a Cauchy-sequence, \(\varepsilon > 0 \). With the Cauchy-property we can assume w.l.o.g that

\[
d_H(A_n, A_{n+1}) < 2^{-n} \text{ for all } n \in \mathbb{N},
\]

since otherwise we choose such an subsequence. We have for \(n \in \mathbb{N} \):

\[
A_n \subseteq B_{2^{-n}}(A_{n+1}) \text{ and } A_{n+1} \subseteq B_{2^{-n}}(A_n).
\]

Then we get for every \(N \in \mathbb{N} \) a sequence \((x_n)_{n \geq N} \) with \(x_n \in A_n \) and \(|x_n - x_{n+1}| < 2^{-n} \) for all \(n \in \mathbb{N} \) with \(n \geq N \). We calculate by triangle-inequality for \(n, m \in \mathbb{N} \) with \(N \leq n \leq m \):

\[
|x_n - x_m| \leq \sum_{j=0}^{m-1} |x_{n+j} - x_{n+j+1}|
\]
This implies \(i.e. \ (x_n)_{n \geq N} \) is a Cauchy-sequence in \(M \). Since \(M \) is complete there is an element \(x \in M \) such that \(\lim_{n \to \infty} x_n = x \) in \(M \). Then we have the estimate

\[
|x_n - x| = \lim_{m \to \infty, \ m \geq n} |x_n - x_m| \\
\leq 2^{-n+1}.
\]

We set as \(A \) the set of all such Limites in \(M \), then by construction the set \(A \) is nonempty. Let \(x \in A \) then there is a sequence \((x_n)_{n \in \mathbb{N}} \subseteq M \) with \(x_n \in A \) and \(|x_n - x| \leq 2^{-n+1} \) for every \(n \in \mathbb{N} \), i.e.

\[
A \subseteq B_{2^{-n+1}} (A_n) \text{ for every } n \in \mathbb{N},
\]

i.e. \(A \) is bounded, and so \(\overline{A} \in A \). Let \(\varepsilon > 0 \) be arbitrary, then we find a natural number \(N \in \mathbb{N} \) such that

\[
\varepsilon > 2^{-N}.
\]

Let \(n \in \mathbb{N} \) be with \(n > N + 1 \). For every \(x_n \in A_n \) we find an element \(x \in \overline{A} \) with

\[
|x_n - x| \leq 2^{-n+1} \leq 2^{-(N+1)+1} = 2^{-N} < \varepsilon,
\]

i.e.

\[
A_n \subseteq B_{2^{-n+1}} (\overline{A}).
\]

This implies

\[
d_H (A_n, \overline{A}) < 2^{-n+1} < \varepsilon \text{ for all } n \in \mathbb{N} \text{ with } n \geq N + 1,
\]

i.e. \((A_n)_{n \in \mathbb{N}} \) converge to \(\overline{A} \).

Now it’s left to show that the set \(A \) is closed under above construction. Let \(a \in \overline{A} \) be an arbitrary limit point and choose \((a_k)_{k \in \mathbb{N}} \subseteq A \) such that \(\lim_{k \to \infty} a_k = a \) in \(M \). Then by construction we find for every \(k \in \mathbb{N} \) a sequence \((y_{nk}^{(k)})_{n \in \mathbb{N}} \) with \(y_{nk}^{(k)} \in A_n \) and \(\lim_{n \to \infty} y_{nk}^{(k)} = a_k \). Now choose \(n_1 \in \mathbb{N} \) such that \(|y_{n_1}^{(1)} - a_1| < 1 \). Do it again choose \(n_2 > n_1 \) with \(|y_{n_2}^{(1)} - a_2| < \frac{1}{2} \). Repeat this prozess, then we get a strictly monotone increasing sequence \((n_k)_{k \in \mathbb{N}} \subseteq \mathbb{N} \) with \(y_{nk}^{(k)} \in A_{n_k} \) and \(|y_{n_k}^{(k)} - a_k| < \frac{1}{k} \) for all \(k \in \mathbb{N} \). By triangle-inequality it follows:

\[
|y_{nk}^{(k)} - a| \leq |y_{nk}^{(k)} - a_k| + |a_k - a| < \frac{1}{k} + \varepsilon
\]

for \(k \in \mathbb{N} \) large enough, i.e.

\[
\lim_{k \to \infty} y_{nk}^{(k)} = a.
\]

Since every convergent sequence is a Cauchy-sequence, the Extension Lemma gives us a Cauchy-sequence \((x_n)_{n \in \mathbb{N}} \subseteq M \) with \(x_n \in A_n \) and \(x_{nk} = y_{nk}^{(k)} \) for every \(n, k \in \mathbb{N} \). This conludes \(\lim_{n \to \infty} x_n = a \) and that means \(a \in A \), i.e. \(A \) is closed, since \(a \) was arbitrary. Everything together we see that \(K (M) \) is complete.

(3) Let \(M \) be compact, then we know by definition that \(M \) is totally bounded and complete. This implies with (1) and (2) that \(K (M) \) is also totally bounded and complete. By definition of compactness again we know that \(K (M) \) is compact.

Exercise 2 (The Ehrling Lemma)

Let \(X \) be a normed space with three norms \(\| \cdot \|_a, \| \cdot \|_b \) and \(\| \cdot \|_c \). These norms have the following two properties:

1. For every sequence in \(X \) which is bounded in the \(\| \cdot \|_a \)-norm there is a subsequence which converges with respect to \(\| \cdot \|_b \)-norm.
2. There is a constant \(\Lambda > 0 \) such that

\[
\|x\|_c \leq \Lambda \|x\|_b \text{ for all } x \in X.
\]
Show that for every $\epsilon > 0$ there is a constant $C_{\epsilon} > 0$ such that
\[\|x\|_b \leq \epsilon \|x\|_a + C_{\epsilon} \|x\|_c \] for all $x \in X$.

Exercise 3 (Precompactness in $C^0(I, K)$)

Let $I := [0, 1]$ be the unit interval in \mathbb{R}. Which of the following families is precompact in $C^0(I, K)$ with $K \in \{\mathbb{R}, \mathbb{C}\}$ with respect to the sup-norm?

1. $A := \{f_n : n \in \mathbb{N}\}$ with $f_n(x) = \sin(x + n)$ for $x \in I$ and $n \in \mathbb{N}$.
2. $B := \{f_n : n \in \mathbb{N}\}$ with $f_n(x) = \sin(nx)$ for $x \in I$ and $n \in \mathbb{N}$.

Exercise 4 (Relativ compactness)

Set $I := [0, 1] \subseteq \mathbb{R}$ and let $k \in C^0(I \times I, \mathbb{K})$ with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ be a continuous function on $I \times I$. We define the integral operator $T : (C^0(I, \mathbb{K}), \|\cdot\|_{C^0(I, \mathbb{K})}) \to (C^0(I, \mathbb{K}), \|\cdot\|_{C^0(I, \mathbb{K})})$ with kernel k by
\[Tf(x) = \int_0^1 k(x, y)f(y)dy, \quad x \in I. \]

On Exercise sheet 2, Exercise 3 you saw that T is a well-defined linear and continuous/bounded operator on $X := C^0(I, \mathbb{K})$. Show that the set
\[K := \{Tf : f \in B^\mathbb{X}_r(0)\} \]
is relativ compact in X, i.e. the closure of K is compact in X, where $B^\mathbb{X}_r(g)$ is the ball in X with radius $r > 0$ and center $g \in X$.

Solution of Exercise 4

We want to use the theorem of Arzela-Ascoli. The interval I is obviously compact in \mathbb{R}, since it’s closed and bounded (Heine-Borel). The family K is pointwise bounded, since for any $x \in I$, $g \in K$ we find a function $f \in B^\mathbb{X}_1(0)$ with $Tf = g$ and then we get
\[|Tf(x)| = \left| \int_0^1 k(x, y)f(y)dy \right| \leq \int_0^1 |k(x, y)| \cdot |f(y)|dy \]
\[\leq \int_0^1 \|k\|_{C^0(I \times I, \mathbb{K})} \cdot \|f\|_{C^0(I, \mathbb{K})} dy = \|k\|_{C^0(I \times I, \mathbb{K})} \cdot \|f\|_{C^0(I, \mathbb{K})} \leq \|k\|_{C^0(I \times I, \mathbb{K})} \cdot \|f\|_{C^0(I, \mathbb{K})} \]
by triangle-inequality. The family K is uniformly equicontinuous, since for every $\epsilon > 0$ we find with the uniform continuity of k on $I \times I$ a $\delta(\epsilon) :=: \delta > 0$ such that for pairs $(x, y), (x', y') \in I \times I$ with $|(x, y) - (x', y')| < \delta$ we have
\[|k(x, y) - k(x', y')| < \epsilon. \]
Then we get for $g \in K$ and $f \in B^\mathbb{X}_1(0)$ with $Tf = g$:
\[|Tf(x) - Tf(x')| = \left| \int_0^1 (k(x, y) - k(x', y))f(y)dy \right| \leq \int_0^1 |k(x, y) - k(x', y)| \cdot |f(y)|dy \]
\[\leq \int_0^1 |k(x, y) - k(x', y)| \cdot |f(y)|dy \leq \int_0^1 |k(x, y) - k(x', y)| dy \|f\|_{C^0(I, \mathbb{K})} \]
\[\leq \int_0^1 \epsilon dy \|f\|_{C^0(I, \mathbb{K})} \leq \epsilon \]
for all $x, x' \in I$ with $|x - x'| < \delta$, i.e. the family K is uniformly equicontinuous. The theorem of Arzela-Ascoli implies now, that the set K is precompact in $C^0(I, \mathbb{K})$ with respect to the sup-norm.