Functional analysis

13. Exercise Sheet

Exercise 1 ((C) Infinite linear system)

Show that the infinite linear system

\[x_i + \sum_{j=1}^{\infty} a_{ij} x_j = b_i \text{ for } i \in \mathbb{N} \]

has for every \(b \in l^2(\mathbb{N}, \mathbb{R}) \) an unique solution \(x \in l^2(\mathbb{N}, \mathbb{R}) \), if the matrix \((a_{ij})_{1 \leq i,j \leq N}\) is for every \(N \in \mathbb{N} \) positive semi-definite with \(\sum_{i,j=1}^{\infty} a_{ij}^2 < \infty \).

Exercise 2 (Solvability of the Neumann-Problem)

Let \(\Omega \subseteq \mathbb{R}^d \) be a bounded domain with \(C^1 \)-boundary and outer unit normal \(\nu \), \(f \in L^2(\Omega) \). For functions \(a \in L^\infty(\Omega, M_d(\mathbb{R})) \) and \(q \in L^\infty(\Omega) \) we define the operator \(L: W^{1,2}(\Omega) \to W^{1,2}(\Omega)' \) by

\[(Lv)(u) = \int_{\Omega} [(a(x) \nabla v(x), \nabla u(x)) + q(x)v(x)u(x)] \, dx \text{ for } u,v \in W^{1,2}(\Omega). \]

Additionally \(a(\cdot) \) is symmetric and elliptic on \(\Omega \) with some constant \(\mu > 0 \). Show that:

1. The operator \(L \) is an isomorphism, if \(q(x) \geq \lambda > 0 \) for all \(x \in \Omega \) and some \(\lambda > 0 \).
2. The operator \(L \) is a Fredholm-Operator with index zero.
 (Hint: Use without proof that the embedding \(W^{1,2}(\Omega) \subseteq L^2(\Omega) \) is compact, if \(\Omega \subseteq \mathbb{R}^d \) is a bounded domain with \(C^1 \)-boundary)
3. The condition \(\int_{\Omega} f(x) \, dx = 0 \) is necessary and sufficient for the existence of a weak solution to the Neumann-Problem

\(\begin{cases} -\text{div}(a \nabla v) = f & \text{in } \Omega \\ \sum_{i=1}^{d} \nu_i \sum_{j=1}^{d} a_{ij} \partial_j v = 0 & \text{on } \partial\Omega \end{cases} \)

Exercise 3 (Solvability criteria)

Consider the operator \(L: W^{1,2}_0(\Omega) \to W^{1,2}(\Omega)' \), \(L = L_0 + K \) defined in the lecture with measurable coefficients \(a, b, c, q \) and let the operator \(L_0 \) be elliptic with constant \(\mu > 0 \). Show for every \(\varphi \in W^{1,2}_0(\Omega) \) the equivalence of the following statements (Theorem 10.20 in the lecture):

1. \(L\varphi = \varphi \) has a solution \(v \in W^{1,2}_0(\Omega) \).
2. \(\varphi(u) = 0 \) for all \(u \in \ker(\text{L}^*) \).

Here \(\text{L}^* := \text{L}' \circ J \), where \(J: W^{1,2}(\Omega) \to W^{1,2}(\Omega)'' \) is the canonical embedding. What is the meaning of (2), if the right-hand side is some \(L^2 \)-function \(f \)?

Exercise 4 ((C) The spectrum of a multiplication operator)

Let \(\emptyset \neq \Omega \subseteq \mathbb{R}^d \), \(X := C^0_b(\Omega) := \{ f: \Omega \to \mathbb{K} \mid f \text{ is continuous and bounded on } \Omega \} \), \(K \in \{ \mathbb{R}, \mathbb{C} \} \), \(m \in X \) and \(T_m \) be the multiplication operator on \(X \), i.e.

\(T_m: X \to X, \ f \mapsto m \cdot f. \)

What is the spectrum \(\sigma(T_m) \)? Determine the type of the spectral values and the resolvent \(R(\lambda, T_m) \) for all \(\lambda \in \rho(T_m) \).