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Chapter 1

Normed vector spaces,
Banach spaces and metric
spaces

1 Normed vector spaces and Banach spaces

In the following let X be a linear space (vector space) over the field F € {R, C}.
Definition 1.1. A seminorm on X is a map p: X — Ry = [0,00) s.t.

(a) plazx) = |alp(z) Vo € F,Vz € X (homogeneity).

(b) p(x+vy) <plx)+ply) Ve,ye X (triangle inequality).

If, in addition, one has

(c) p(x) =0=>2=0

then p is called a norm. Usually one writes p(x) = ||z||, p = || - ||. The pair
(X, ]|+ |) is called a normed (vector) space.

Remark 1.2. o If| - | is a seminorm on X then

[zl = lyll| < llz =yl Vz,y € X (reverse triangle inequality).

Proof.

[zl = llz =y +yll < [lz =yl + llyll
= llzll = llyll < llz =yl

Now swap z&y: ||z — [lyll < [ly — ]| = [(=1)(z — y)|| = |z — y]|.
Hence

[l = llyll] = maz(lzll = lyll. lyll = llz]) < = =yl
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e [0 = [/0.0][ = [o[.[|0]| = 0.
Interpret ||z — y|| as distance between = and y.

Definition 1.3. Let (z,)neny = (zn)n be a sequence in a normed vector space
X ((X,]|-1)). Then (z,), converges to a limit x € X if Ve > 0AN. € N s.t.
Vn > Ng it holds ||z, — x| < € (or ||xn — x| < €). One writes x,, — = or
lim,,yoo T, = .

(Zn)n is a Cauchy sequence if Ve > 0IN. € N s.t. Vn,m > N, it holds
[#n = zmll <& (or [|on —zm| <€)

(X, - |) is complete if every Cauchy sequence converges.

A complete normed space (X, || -||) is called a Banach space.

Remark 1.4. Let X be a normed vector space, (x,)n a sequence in X.

(a) If x, — x in X, then (x,)n is a Cauchy sequence.

Proof. Given € > 03N, : Vn > N, : ||z — z,|| < §. Hence for n,m > N. we

have
[en = 2l = ll2n — 2+ 2 —2n| < |lzn -2l + |2 — 2] <e
O
(b) Limits are unique!
If v, > xin X and x,, >y in X, then x = y.
Proof.
[z =yl = llz = zn + 20 — yll
<|lzn —z||+ |z —yl| = 04+0=0 asn— co.

O

(¢) If (xn)n converges or is Cauchy, then it is bounded, i.e.

sup ||z, < 0.
neN

Proof. Take € = 1. Then there exists N € Ns.t. Vn,m > N : ||, — 2| <
1. In particular, Vn > N : ||z, — zn] < 1.

= |znll = 2 —2n + 2nl| < [lzn —an| + o] <1+ [lzn] (vn €N)

= Vn € N :lzn| < maz(|lzafl, 2]l .. e, 1+ [len]) < oo
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Let X be a normed vector space, S # () a set. For functions f,g : S — X,

a, B € F define
fig: S—X
T s (F+9)(s) = F(s) + 9(s)
af.{S—>X
s (af)(s) = af(s)

So the set of functions from S to X is a normed space itself!
In case X =R, we write f > « (or f > «)if f(s) > aforalls € S (f(s) > «
for all s € S). Similarly one defines o < f < 8, f < g, etc.

Example 1.5. (a) X = F? d € N is a Banach space (or short B-space) with
respect to (w.r.t) the norms

n

1
el = (Dolal)” 1<p<oo,

Here x© = (11,29, ...,24) € F.

(b) Let Q # 0, L>=(Q) = L>°(Q,R) = the set of all real-valued functions on )
which are bounded, i.e.

feL>™(Q) then IM; < o0 : |f(w)] < My for allw € Q.

Norm on L*(Q): for f € L®(Q) : || flloc = supyeq |f(w)| (check that this
is a norm!).
Claim: (L*(Q),] - |leo) s a Banach space.

Proof. Normed vector space is clear.

Take (f,) a Cauchy sequence in L=(Q) w.r.t. |- |lco. We have: Ve > 03N :
Vn,m > N : ”fn - fm”oo <e.

Fix w € Q, then (fn(w)) is a Cauchy sequence in R since

@) = fn(@)] < 80D [ fw) = fn (@) = [l 0 = frnlloo <& ¥n,m = N.

Since R is complete, f(w) := limy, o fn(w) exists (this f is the candidate
for the limit). We have

F@) € 1F@) = fal@)] + | f()
= Hm [ (@) — ful@)] + @) < 2+ [fulw)]
m—00 Tg.?/

= supueal f(w)] < oo,

e, f e L>(Q).
Take ¢ > 0. Then

@) = f@)] = lm |fulw) = fn(w)|<e ifn>N
m—)OO\_v_/

<e if n,m>N
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=>Vn>N:|fo— flloo <eg, ie, fn— fwrt || e

O

(c) X =C(0,1]), |l := { |f(t)|dt is a norm, (0([0, 1)), ||.||1) is not complete.

Proof.
Ifl >0 Vfec(o,1).
1
Hf+w1:/Uﬁ%HMMﬁSHﬂh+Mm
—_————
0 <Jr)l+lg(t)]
1
nafn1=l/ﬂaf@ndt=|amful
0
So || - || is & seminorm.

If f# 0 and f is continuous, we see that there exist an interval I C [0, 1],
0 > 0 such that |f(t)] > Vt € I.

1
= || fllx :/\f(t)|dt2/|f(t)|dt26.lehgth of I > 0.
0 I

>6
So || - |1 is a seminorm. Now take a special sequence
0, fo<t<i-4
fat):=qnt—%+1, ifj-L<t<i (n>3)
Lift>1

For m >n > 3:

Ilfn = fmllL = / |fn(t)—fm(t)|dt§%—>0 as n — 0o,

N
3=

0

so (fn) is a Cauchy sequence.
Assume that f, — f € C([0,1]). Fixa € [0,3),n:

N

Si=
Vv
Q

og/|f(t)|dt:/|fn(t)—f(t)|dt
0 0

1
S/Uwﬂ—ﬂmﬁ=ﬂh—ﬂh%0
0
Hence f(t) =0forall0 <t <qa,al0 <a <3

1
f&)=0 forall0<t< 7
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On the other hand

0< /| ) —1|dt = /|f @|dt <||f — fall =0 asn— o
2

Since f is continuous on [0, 1], it follows that f(¢) =1 for £ <t < 1.
So f cannot be continuous at ¢t = % A contradiction. O

2 Basics of metric spaces

Definition 2.1. Given a set M # (), a metric (or distance) d on M is a function
d: M x M — R such that

(a) d(z,y) > 0Vr,y € M and d(z,y) =0 < x =y.
(b) d(z,y) =d(y,x) Ve,y € M (symmetry).
(c) d(z,y)

The pair (M,d) is called a metric space. We often simply write M if it is
clear what d is.

A sequence () in a metric space (M, d) converges to x € M if Ve > 03N, €
NVn > N : d(z,z,) < e (or <e). One writes limx,, = x or x, — x.

<d(z,z)+d(z,y) Yx,y,z € M (triangle inequality).

One always has
|d(z,2) — d(z,y)| < d(z,y)
Hint for the proof:
d(z,z) <d(z,y) + d(y, z)
and think and use symmetry.
Example 2.2. o R with d(z,y) = |z — yl;

e Any normed vector space (X, | - ||) with d(z, lz —yll;

Nl

y) =
d
e EBucledian space R? (or C*) with da(x,y) = ( Z lzj—y;]?)? ordy(z,y) =

m»—‘

d
( Z:: |z — yJ‘p)

or doo(x,y) = max;=1,..q|z; — y;|.

o M #0, defined: M x M — R by

d(z,y) = {0’ vo=y

1, else

is discrete metric. (M,d) is called discrete metric space.

% — l‘ s a metric.

e M =(0,00), d(z,y) = y
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o Paris metric

d(z,y) = |z —yl, ifx= Ny for some A >0,
P el + lyl, else.

o If (M,d) is a metric space, N C M, then (N,d) is a metric space. Exam-
ple: M =R? N = {z:|z| = 1}.

o M = FN = set of all sequences (ay)n,a, € F = set of all functions a :
N — F is a metric space with metric

(o) . .
_j_la(G) = b()|
d(a,b) =) 279 ——22 2
(@)= 2 2 G
Proof. d(a,b) > 0,d(a,b) =0=a=0b,d(a,b) = d(b,a) are clear.
Need d(a,b) < d(a ¢) + d(c,b) for all sequences a, b, c.

.- ihol
Note: 0 <t +— 1+t is increasing!

NSy lali) = b0
d(“’b)_;2 1+ Ja(i) = b))
o |a(g) = ()] + le(G) = b(j)
< L Tl = e+ o) - 0]
o [ lali) = ()] lc(3) —b(4)]
<2 <1+|a<j>—c<j>| 1+|c<J>—b<y>|>’

since, by the triangle inequality, |a(j) — b(j)| < [a(j) — c(7)] +]e(j) — (7).
Note: (an)n C FN a, — a in FY <= Vj € N: a,(j) = a(j) and this
space is complete!

yslan() = a(y)
T+ Jan () — a7

= lan(j) —a(j)| < 2d(ay, a) (1 + lan(d) — a(5)])
——
<1 for » large enough

<d(an,a) for fixed j

< 2d(an,a) + §|an(j) —a(j)| for n large enough
= for n large enough:|a, (j) — a(4)| < 2"'d(a,,a) — 0 as n — oo,

0 a, — a in FN = Vj € N:a,(j) — a(j).
Need «:

& _; lan(d) —a(j)l
d(an,a) =2 1+ |an(4) — a(y)]

j=1
L e’}

< > 27an(d) — a(h)| + > 2
j=1 L+1

N——

<Lmaxj-1,..rlan(j)—a(i)] <2 by choosingL large enough
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Definition 2.3. Let (M,d) be a metric space.
e The open ball at x with radius r > 0: B.(z) :={y € M : d(z,y) <r}.
o AC M is open if Ve € A Ir > 0 with B,(z) C A.

Note: Every open ball is itself an open set! Indeed, y € B,(x),r :=r—d(z,y) =
B, (x) C B,(x) since, if z € By, (y) then

d(z,z) < d(z,y) +d(y,z) < d(x,y)+r =71
s0 z € By(x).
Theorem 2.4. (a) M and § are open.
(b) An arbitrary union of open sets is open.
(¢) Finite intersections of open sets are open.
Proof. (a) Clear.
(b) Take (A4;);es,A; C M open.
S UAj:{yEM:EIjGJWithyeAj}éﬂjGJ:zeAj.
jeJ

Since A; is open, there exists 7 > 0 with B,(z) C A; C U,c; A;. Hence

Ujes Aj is open.
(c) Take {44,...A,} open sets in M

n
xEA::ﬂAjz{yeM:yeAjforallj:l,...n}

j=1

Ajopen=3r; >0: B, (z) C Aj,j =1,...n. Letr:=min(ry,ry,...,rn) >
0. Then

B.(z) C By;(x) CAjforall j=1,...n

= B.(z) C [ 4;
j=1

O

Definition 2.5. (a) x € A is called an interior point of A if Ir > 0: B,.(x) C
A. The set of all interior points is denoted by A°.
Note:
o A° is the largest open subset of M contained in A.
o Aisopen < A= A°.

(b) A C M is closed if its complement A° .= M\ A={x e M:x ¢ A} is
open;
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Theorem 2.6. (a) M and () are closed.
(b) Arbitrary intersections of closed sets are closed.

(¢) Finite unions of closed sets are closed.
Proof. (a) M°¢ =10, ()¢ = M are open.

(b) (Aj)jes family of closed sets. By Theorem 2.4 and de Morgan’s law

( ﬂ Aj)c = U A;r is open,

JjeJ jeJ

s0 (;es Aj is closed;

(¢) Combine (U?Zl Aj)c = j=, A§ with (c) of Theorem 2.4.
O

Definition 2.7. A point x € M is called closure point of A C M if Vr > 0 :
B, (x)NA # (. The set of all closure points of A is denoted by A and it is called
the closure of A.

Clearly A C A.

Theorem 2.8. Let (M, d) be a metric space, A C M. Then A is the smallest
closed set that contains A.

Remark 2.9. Let F4 := {B C M : B is closed and A C B}. Then the smallest
closed subset of M that contains A is, of course, given by ﬂBerfA B. (think about
this!)

Proof of Theorem 2.8. Let AC M.
Step 1: A is closed. Indeed, if z € (A)¢, then Ir > 0 with B,.(z) N A = 0. We

want to show that B,.(z) C (A)¢, because then (A)¢ is open, hence A is closed.
Let y € By(x). Since B,(z) is open, there exists § > 0 with Bs(y) C B,(z)

= Bs(y)yNAC B.(z)NA=10
=y ¢ A and since y € B,.(x) was arbitrary, this shows

B.(z)NA=1

so By(x) C (A)°, hence (A)° is open.

Step 2: Let B C M be closed with A C B. We show A C B. Indeed, take
x € B°. Since B¢ is open, there exists r > 0 with B,(x) C B¢, i.e., B.(z)NB = 0.
In particular, B,(z) N A C B,(z) N B = (. So no point in B¢ is a closure point
of A= A C (B°°=B. O

Corollary 2.10. A C M is closed = A = A.

Proof. Have a close look at Theorem 2.8. O
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Remark 2.11. o Forae M andr >0 call
Br(a) :=={x e M : d(xz,a) <7}
the closed ball at a with radius r. This is always a closed set. Indeed,

assume x ¢ Br(a), i.e., d(z,a) > r and set r1 := d(z,a) —r > 0. If
y € By, (x), then

d(a,z) < d(a,y) + d(y, )

< d(a,y) > d(a,x) —d(y,z) > d(a,x) —r1 =,

i.e., y ¢ Br(a), hence By, (x) C (Br(a))® so (Br(a))® is open < Br(a) is
closed.

e One always has B.(a) C Br(a). In a discrete metric space the above
inclusion can be strict! But, e.g., in R? with the distance dp,1 <p < oo,

one always has By(a) = Br(a). (think about this!)
Lemma 2.12. If (M, d) is a metric space, then A° = (A¢)c.
Proof.

r€A°<Ir>0:B(x)CA
< B (x)NA° =0
s g A
&z € (A°)°.

O

Definition 2.13. Let (M, d) be a metric space, A C M. A point x € M is an
accumulation point of A if

Vr >0 B.(z)n(A\{z}) #0,
i.e., every open ball around x contains an element of A different from x.
Note:
e It can be that = ¢ Al
e Every accumulation point is a closure point of A.

e If one denotes the set of all accumulation points of A by A’, then one has
A=AUA (why?).

Theorem 2.14. Let A C M, (M,d) a metric space. Then x € M belongs to A
if and only if (iff) there is a sequence (x,)n, C A with limx,, = x. Moreover, if
x s an accumulation point of A, then there exists a sequence (xy,), C A with
T # Ty F T, F M, i.e., all terms are distinct.
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Proof. Let z € A. Given n € N pick z,, with z,, € B,.(x) N A(# 0 since z € A!).
Then z,, € A and limx,, = x.

Conversely, if z,, € A and lim z,, = x, then given r > 0 there exists k € N such
that d(z,z,) < r for all n > k. Therefore B,.(z) N A # () for all r >0 = z € A.
If z is an accumulation point of A, choose z; € A,z1 # x and d(z,x;) < 1.
Then, inductively, if 1, ... 2, € A\ {z} pich 41 € A\ {z} with

. 1
d(z,Tn41) < min (m,

d(z, mn)>
Thus (z,)n is a sequence in A\ {z}, z, # 2, if n # m and limz,, = z. O
Definition 2.15. A C M is dense in M if A= M.

Remark 2.16. e By Theorem 2.14, A is dense in M iff Vo € M, 3 sequence (zp,), C
A with lim x,, = x.

o Aisdense in M < VNA#D for every nonempty open set V.

Definition 2.17. Let AC M. x € M is a boundary point of A if Vr > 0 :
B.(x)NA#0+# B.(x) N A°. The set of all boundary points of A is denoted by
0A and it is called boundary of A.

Note:
e By symmetry, 0A = J(A°).
e 0A = AN Ac (Why?)

Definition 2.18 (Continuity). Let (M, d), (N, p) be two metric spaces. A func-
tion f: M — N is

e continuous at a point a € M if Ve > 036 = 6(¢) > 0 with p(f(z), f(a)) <&
for all d(z,a) < 6.

e continuous on M (or simply continuous) if [ is continuous at every point
of M.

o sequentially continuous at a point a € M if for every sequence (zy)n, C
M, x, — a one has f(x,) — f(a).

e sequenctially continuous on M (or simply sequentially continuous) if it is
sequentially continuous at every point of M.

e topologically continuous if for every open set O the set f~1(0) C M is
open.

Theorem 2.19. For a function f: (M,d) — (N, p) between two metric spaces,
the following are equivalent:

(a) f is continuous on M.
(b) f is topologically continuous on M.
(c) [ is sequentially continuous on M.

(d) f(A) C f(A) for every A C M.
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(e) f~1(C) C M is closed for every closed subset C C N.
Remark 2.20. For a fized a € M, the following are also equaivalent:
(a’) f is continuous at a.

(¢’) f is sequentially continuous at a.
(Prove this!)

Proof of Theorem 2.19. (a) = (b): Let O C N be open and a € f~1(0). Since
f(a) € O and O is open, there exists r > 0 such that B,(f(a)) C O C N.
f continuous implies that there exists § > 0 such that

d(x,a) <6 = p(f(x), f(a)) <,

i.e., Bs(a) C f71(0) and so f~1(0) is open.

(b) = (¢): Let &, = z in M and € > 0. Let V := B.(f(z)) C N, which is
open. Then f~1(V) is open in M and since x € f~1(V) there exists § > 0
such that Bs(z) € f~1(V). Let N € N be such that n > N = z,, € Bs(x)
(i.e., d(zp,z) < § for all n > N), Then also x,, € f~5(V), so f(z,) € V, i.e.,
p(f(xyn), f(x)) < e for all n > N. Thus f(z,) — f(x).

()= (d): Let A C M. Assume y € f(A). Then there exists z € A with
f(x) =y. Since x € A, by Theorem 2.14, it follows that there exists a sequence
(n)n C A with z,, — z, but then by (¢): f(z,) — f(z) in N, ie., y € f(A).
So 1(4) C J(A). )

(d) = (e): Let € C N be closed, so C = C. Let A := f~(€). Then by (d) we
have

fA)cf)=c=c,

so A C f71(€) = A. Since A C A is always true, we must have f~1(C) = A = 4,
i.e., f71(C) is closed.
(e) = (a): Let a € M and £ > 0. Consider

C:=B.(f(a))" ={y € N: p(f(a),y) >}
which is closed. By (¢) f1(€) € M is closed, ie., ( f—l((?))c is open. Thus,
since a ¢ f~1(C), ie., a € (f—l(e))c, there exists § > 0 such that Bj(a) C
( f*l(e))c. But then d(z,a) < § = p(f(z), f(a) < &, L.e., f is continuous. OJ

Remark 2.21. It should be clear that compositions of continuous functions are
continuous.

Definition 2.22. e Two metric spaces (M,d), (N, p) are homeomorphic
if 3 a one-to-one onto function (i.e., bijection) f : (M,d) — (N, p) such
that both f and f~! are continuous;

e Two metrics d and p on M are equaivalent if a sequence (x,), C M
satisfies

limd(z,,x) =0 < limp(z,,z) =0,

or equaivalently, if any open set w.r.t. d is open w.r.t. p and conversely.
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o A metric space M is bounded, if 30 < M < oo s.t. d(z,y) < MVz,y €
M. The diameter of A C M is

d(A) :=sup(d(z,y) : z,y € A).
Note: If d is a metric on M

d(z,y)

p(z,y) = m

is an equaivalent metric on M under which M is bounded!
o A sequence (xn)n in a metric space (M,d) is a Cauchy sequence if
Ve > 03N. € N: d(xp, zym) < € for alln,m > N.

Note: Ewvery convergent sequence (), is a Cauchy sequence (Why?).
The converse is not true, e.g. take M = (0,00),d(z,y) = |z — y|. Then
Ty = % is Cauchy but not convergent in M.

o A metric space (M,d) is complete (or complete metric space) if every
Cauchy sequence converges (in M ).

Example 2.23. o R¢ with Eucledean metric or with dp,1 <p < oo.

b LOO(S)vs # 0, D(f,g) = SUPges ‘f(S) —g(s)\.

Theorem 2.24. Let (M,d) be a complete metric space. Then A C M 1is closed
if and only if (A,d) is a complete metric space (in its own right).

Proof. "=": Let A C M be closed, (z,)n C A be Cauchy = (z,), is Cauchy
in M. Since M is complete, it follows that = lim,, ,, x, exists in M. Since
A is closed, we conclude that z € A. So (), converges in A and thus (A, d) is
complete.

"«<": Let (4,d) be complete. Let (x,), C A converge to some x € M.
So (zy,)n is Cauchy in A, A is complete = (x,), converges to some point in
A C M. The limit is unique so z = lim,, o, x, € A. So A is closed. O

Lemma 2.25. Let (M,d) be a metric space and (Tp)n, (Yn)n C M s.t. x, —
z,Yn — y. Then

lim d(zy,y,) = d(z,y).

n—0oo

Proof. By the triangle inequality one has
|d(z, 2) — d(z,y)| < d(z,y)

= |d(@n, yn) — d(@,y)| < |d(@n, yn) — d(z,yn)| + [d(2,yn) — d(z,y)]
< d(xn,z) + d(yn,y) > 0 asn — oo.

O

Definition 2.26. A function f: (M,d) — (N, p) is called uniformly contin-
uous if Ve > 035 > 0: z,y € M,d(x,y) < é(or < 0) = p(f(z), f(y)) < e(or <
€).
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Remark 2.27. e Fwery uniformly continuous function is continuous.

e M = (0,1],N = R,d(z,y) = |z —y|,d : (0,1] = R,z — f(z) = 22 is
uniformly continuous, g : (0,1] = R, 2 — g(z) = L is continuous but not
uniformly continuous.

Theorem 2.28. Let A be a subset of a metric space (M,d), (N, p) be a complete
metric space. If f : A — N is uniformly continuous, then f has a unique
uniformly continuous extension to the closure A of A.

Remark 2.29. This does not hold if f is only continuous!
Ezample: 1) f:(0,1] - R,z — 1.

1, ifa?>2

—1, ifz?<?2

Note that f also is differentiable on Q with zero derivative!

Look at g(z) = x +4f(z),z € Q= ¢'(x) = 1. So g "must” be increasing! (7).

But

2) f:Q—>Rz— is a continuous function in Q!

So g is not increasing!

Proof of Theorem 2.28. Step 1: Uniqueness should be clear (why?).

Step 2: Let € A. By Theorem 2.14, there exists a sequence (x,,), C A with
Tp — T

Claim: lim, o f(z,) exists in (N, p)!

(N, p) is complete = we only need to show that (f(z,)) is Cauchy in (N, p). Let
e > 0. Since f is uniformly continuous, 36 > 0 : d(z,y) < d = p(f(x), f(y)) <
Solet N. € Nbe such that d(zy, x,) < d foralln,m > N, = p(f(z ),f(:cm))

e for all n,m > N,.

Step 3: The limit lim,,—, o f(2,) in Step 2 is independent of the sequence as long
as T, — x. Indeed, let (2,)n, (Yn)n C A, Tn — T,y — = in M. By Step 2 we
know that v = lim f(x,),v = lim f(y,) exist in N. We want to show u = v.
For n € N, let 2o, = @p, 22n—1 = Yn = 2zn — « also, and, by Step 2: lim f(z,)
exists. We have

v =1lim f(y,) = lim f(22n,—1) = lim f(z,) = lim f(29,) = lim f(z,) = u.
Step 4: Define f* =lim f(x,), 2, € A, z, — x (well defined by Steps 2&3). Of

course f*(z) = f(z),z € A is an extension of A to A.

Step 5: f* : A — N is uniformly continuous. Indeed, given ¢ > 0, let § > 0
such that z,y € A,d(x,y) < § = p(f(x), f(y)) < e. Now if z,y € A satisfy
d(z,y) < 4, let (xp)n, (Yn)n C A, Zn = 2,y — y. By Lemma 2.25

limd(zy, yn) = d(z,y) <6 = INg € N: d(xn,yn) <6 orall n > Ny.

Since f is uniformly continuous

p(f(zn), flyn)) <e
By Lemma 2.25

p(f(x), f(y)) =limp(f(z), f(y)) <e

so f* is uniformly continuous. O
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Definition 2.30. o A function f : (M,d) — (N,p) is an isometry if
p(f(x), f(y) = d(z,y) for all x,y € M. If f is also onto, then (M,d)
and (N, p) are isometric.

Note: any isometry is uniformly continuous!

o A complete metric space (N, p) is called a completion of a metric space
(M, d) if there exists an isometry f : (M,d) — (N, p) such that f(M) =
{yeN:3x e M :y= f(x)} is dense in N (w.r.t p).

If we think of M and f(M) as identical, then M can be considered to be
a subset of N.

Remark 2.31. Any two completions of a metric space (M, d) must be isometric.
Proof. Indeed, if N1, Ny are completions of M:

Ny O dense g(M) & M EN f(M) dense C N,
f, g are isometries. Define h :=go f=1: f(M) — f(M). h is also an isometry
(so, it is uniformly continuous). f(M) is dense in Ny, No is complete, so by
Theorem 2.23 h has a unique uniformly continuous extension h : Ny — Na.
Note: h is an isometry from N7 onto No! (Why?) (use that g(M) is dense in
Na). O

Our approach to completeness: Given a metric space (M, d), find a complete
metric space (N, p) and an isometry f : (M,d) — (N, p). f(M) is then isometric

to M. Take the closure f(M) in N. Then (f(M),p) C (N,p) is a completion
of (M, d)!

Theorem 2.32. Every metric space (M,d) has a unique (up to isometries)
completion.

Proof. Goal: Embedd M in a complete metric space and take the closure!
We will use (L*° (M), D), the bounded real-valued functions on M with

D(f,9) := sup [f(x) — g(z)|
reM

Fix a € M. For x € M let

£ M — R,
° nyz(y) = d(x,y)—d(y,a)
By the reverse triangle inequality:
So fp € L>=°(M). Hence there exists a unique
)M — L>*(M),
N fe

Claim: f is an isometry!
Indeed, for z,y,z € M:

|fz(y) - fz(y)‘ = |d($,y) - d(yva) - (d(Z,y) - d(y,a))|
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= D(facafy) = Ssup |fm(y) - fz(y)| < d($,2)
yeM

Choose y = z:
|fx(z) - fz(z)| = ‘d(xaz) - d(Z,Z)l = d({E,Z),

D(fz, f2) = d(z, 2).

Since (L*°(M), D) is a complete metric space = (f(M), D) is a completion of
(M, d). O

3 Compactness in metric space

In the following let (M, d) be a metric space.

Definition 3.1 (Totally bounded set). A subset A C M is totally bounded if
Ve>03neN:zy,...,x, € M with AC |J;_, B=(w;) (so each x € A is within
e-distance from some x;).

Remark 3.2. (a) Every x € A can be approzimated up to error e by one of the
€Zj.
(b) In a finite dimensional (vector) space totally bounded is equivalent to bounded.

In general totally bounded = bounded, but the converse in wrong!

(¢) In Definition 3.1 we could easily insist that each e-ball is centered at some
point in A. Indeed, let € > 0, choose x1,...,x, € M.

Ac | Bs(x).
i=1
W.l.o.g., we may assume that B%(xz) NA#(. Then choose any y; € AN
B (x;). By the triangle inequality: Bs(x;) C Bo(yi) = A C U;—; B=(y:)-

Lemma 3.3. A C M is totally bounded < Ve > 0 there exist finitely many sets
Ay, ... A, with diam(A;) <e foralli=1,...n and A C |J_, A;.

Proof. "=": Let A be totally bounded. Given € > 0 choose 1, ...z, € M with
A c U, Be(wi). Let A; := ANB.(x;) to see that J;—_, A; = U;_; ANB:(x;) =
AN (U, B:(z;) = A and note that diam(4;) < 2e.

"<": Given € > 0 assume that there are finitely many A; C A,i = 1,...,n,
diam(4;) < e, A C Ui, A;. Then choose any z; € A; = A; C Ba.(z;)(Vi =
1...77,):>ACU,7=1325(1’2'). O

Remark 3.4. In Lemma 3.3 we insisted on A; C A(Vi =1...n). This is not
a real constraint. If A is covered by Bi,...,B, C M, diam(B;) < . Then A
is also covered by A; = AN B; C A and diam(A4;) < diam(B;) < e.

There is also a sequential criterion for total boundedness. The Key observa-
tion is



20 CHAPTER I. NVS, BS AND MS

Lemma 3.5. Let (zy), C M, A= {z,:n & N}. Then

(a) If (xy)n is Cauchy, then A is totally bounded.

(b) If A is totally bounded, then (xy,), has a Cauchy subsequence.
Proof. (a) Let € > 0. Since (z,,), is Cauchy, there exists N € N with

(T, Tm) < for all n,m > N

N ™

€
= sup d(xn,zm) < - <e¢
n,m>N 2

= diam{z, :n> N} = sup d(z,,zm) <e
n,m>N

= {zn:n > N} C Bo(an).

(b) If A is finite, we are done because by pidgeonholing, there must be a point
in A which the sequence (x,,), hits infinitely often. Thus (), even has a
constant subsequence in this case.

So assume that A is an infinite totally bounded set. Then A can be covered
by finitely many sets of diameter < 1. At least one of them must contain
infinitely many points of A. Call this set A;. Note that A; is totally
bounded, so it can itself be covered by finitely many sets of diameter < %
One of these, call it Ay, contains infinitely many points of A;. Continuing
inductively we find a decreasing sequence of sets A D A1 D Ay D -+ D
An D Apy1 D ... where each Ay contains infinitely many x,, and where
diam(Ag) < 1.

Now choose a subsequence (Zn, )k, Zn, € Ak, k € N. This subsequence is
Cauchy, since

sup(d(xy,, T, )l,m > k) < diam(Ay) <

| =

O

Theorem 3.6 (Sequential characterization of total boundedness). A set A C M
is totally bounded <= every sequence in A has a Cauchy subsequence.

Proof. “=": Clear by Lemma 3.5.

“e": Assume A is not totally bounded. So for some £ > 0, A cannot be
covered by finitely many e-balls. By induction, there is a sequence (z,), C A
with d(zp,xm) > € for all n # m (Why?). But this sequence has no Cauchy
subsequence! O

Corollary 3.7 (Bolzano-Weierstral). Every bounded infinite subset of R¢ has
an accumulation point.

Proof. Let A C R? be bounded and infinite. Then there is a sequence (z,,),
of distinct points in A. Since A is totally bounded (R? has dimension d < co)
there is a Cauchy subsequence of (x,),, but R? is complete, so (x,,), converges
to some x € R, This z is an accumulation point of A. O
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Now we come to compactness.

Definition 3.8. o A metric space (M,d) is compact if it is complete and
totally bounded.

o A subset A C M is compact, if (A,d) is a compact metric space.
Example 3.9. (a) K C R? is compact < K is closed and bounded.

(b) Let I*° = set of all bounded sequences and let

e, = 57,“ 5n(]) — {17 Zf.j =n,

0, else.

Then the set A := {en|n € N} is closed and bounded, but not totally bounded,
since

d(en,em) =suple,(j) —en(§)| =1, if n#£m,
JEN

hence, A cannot be covered by finitely many € = %—balls/ (Why?)
(c) A subset of a discrete metric space is compact <= A is finite. (Why?)
The sequential characterization of compactness is given by

Theorem 3.10. (M, d) is compact < every sequence in M has a convergent
subsequence in M.

Proof. By Lemma 3.5 and the definition of completenes:
every sequence in M
has a Cauchy subsequence
+
Cauchy sequences converge

totally bounded
+ —
complete

O

Compactness is an extremely useful property to have: if you happen to
have a sequence in a compact space which does not converge, simply extract a
convergent subsequence and use this one instead!

Corollary 3.11. Let A be a subset of a metric space M. If A is compact, then
A is closed in M (and totally bounded). If M is compact and A is closed, then
A is compact.

Proof. Assume that A is compact and let © € M and (z,), C A with z,, — «.
By Theorem 3.10, (x,), has a convergent subsequence whose limit is also in
A= x € Aso A is closed.

Assume M is compact, A C M is closed. Given (x,), C A, Theorem 3.10
supplies a convergent subsequence of (x,), which converges to a point = €
M. Since A is closed, we must have z € A, so by Theorem 3.10 again, A is
compact. O
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Corollary 3.12. Let (M,d) be compact and f : M — R continuous. Then f
attains its maximum and minimum, i.e., there are Tmin, Tmax € M such that

f(@min) = inf(f(z)|xz € M),
f(Zmax) = sup(f(x)|z € M),

In particular, inf and sup are finite!

Proof. Only for mininmum (otherwise look at — f).
Let a := inf(f(x)|z € M). Note that there is always a minimizing sequence,
i.e., a sequence (z,), C M such that

f(z,) > a asn— oc.

Now if (z,), converges to some point z € M, then we are done, since by
continuity of f,

flz) = lim f(z,) =a=f(f(z)|z e M).

n—oo

If (x,)n does not converge, use the fact that M is compact, so by Theorem 3.10
(2n)n has a convergent subsequence and then use this subsequence instead! O

Corollary 3.13. Let (N,p) be a metric space. If (M,d) is compact and f :
(M,d) — (N, p) is continuous, then f is uniformly continuous.

Proof. Recall the definition of uniform continuity:
Ve > 036 >0:z,y € M,d(z,y) <= p(f(z), fy) <e.

So assume that f is not uniformly continuous. Then by negating the above one
sees

Je>0:Y0 >03z,y € M,d(z,y) < and p(f(z), f(y)) > e.

Now fix thise > 0 and let § = % Then there must exist 2, yn € M, d(xpn, yn) <
L and p(f(xn), f(yn)) = €. Since (yn)n C M and M is compact, there exists
a subsequence (yp,); of (yn)n which converges to some point y. Look at (zy,);.
Again by compactness, there exists a subsequence (xnlk) r which converges to

some point z. Since Ty, — T and Yn,, — Y We have
d(.fL" y) = lim d(xnlk ) y'ﬂlk ) = 07
k=00 , ,

e, r=1y.
But since p(f(xy), f(yn)) > € > 0, we have

Jm fwn, ) # Hm fyn, )
so f is not continuous at x.

Thus f not uniformly continuous = f not continuous <= f continuous = f
uniformly continuous. O
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4 The sequence spaces [’(N),;1 <p < o0

Definition 4.1. e [°(N) is the space of all bounded sequences x : N — T
equipped with the norm

2]l oo := sup |2, ].
neN

o Let 1 < p < oo. IP(N) is the space of all sequences x : N — F for which

> |znlP < co. With
neN

1

P
ol == (D leal?)
it becomes a normed vector space.
Lemma 4.2. Let 1 <p < oo. Then (IP(N), | - |p) is a normed vector space.
Proof. Case 1: p = oo should be immediate.
Case 2: 1 < p < oo is more complicated. It is not even obvious why (I, - ||,)
is a vector space. If z € [P and « € F, then ax € [P is clear, but if z,y € IP(N)

why is z +y € IP(N)?
Let z,y € IP(N), i.e., ||z|p, |yllp < co. Then

(oo} (oo}
Z |20 +ynlP < 2(2 max (|2, [yn|))”
n=1 n=1
oo o0 oo
=20 max(|zal,lyal) <27 |zal” + Y yal?) < o0
n=1 n=1 n=1

so x4y € IP(N).
To show that || - ||, is a norm, we only have to check the triangle-inequality and
for this we need some more help.

Lemma 4.3 (Holder inequality). Let 1 < p < oo and define the dual exponent
q € [1,00] by

00, ifp=1,
9= 1’ pr:OO,
%( i.e., q is such that % + % =1), ifl<p<oo.

Then if x € IP(N),y € 14(N) and if x — y is defined by (- Y)n := Ty - Yn,n €N,
then x -y € I*(N) and

-yl < llzllpllyllq-

Armed with this, we can show that || - ||, is a norm for 1 < p < oo.
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Let z,y € IP(N), then

Hw'i‘yHg:len'i'yn Z |Zn| + |ynl)?

n=1

M

(lzal + lynl) (Jza] + lyn )~

3
I
-

[ee]
|| (|Zn] + lyn )P~ + Z ynl(Jzn] + lyn])P ™1 =: (%)

n=1

M

Il
-

n

We know already that x +y € [P. Let g be the dual exponent to p. Then
£ = p—1 (with the convention that = = 0). So, since (|| + |yn|)n € 1P, one
has

(2l + [yal)?™" = (|l + ya]) ¥ € 1%

So the Holder inequality applies to (x) and

9] [es) o0
P P
D (aal + 19a)? = lzal(al + ya) T + D lyal(lzal + lynl) e
n=1 n=1 n=1
[eS) L ) b1
< Zmn‘p p Z |Zn| + [ynl) @ )q
n=1 =1

oo

Z ] + ) §9) ¥

m»—‘

n
+( Z lyn[?)
n=1

= (lllly + lyllp) (D (@l + lya)?)

n=1

o0

-

0o
1_l
= (D (aal +19aD?) 7% < lllp + llyllp-
n=1

oo 1
( 3 (wnl+lyah?) * =llatully
So [lz +yllp < llzllp + 1yllp- N
It remains to prove Holder inequality. For this we need

Lemma 4.4 (Young’s inequality). Let 1 < p < oo. Then for all a,b >0

1 1

ab < —a? 4+ =17,
p q
1,1 _

where st = 1.
Proof. For some suitable function G, we want to have an inequality of the form

a-b<G(a)+ F(b) VYa,b>0
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for a suitable function F'. How to guess F'?
Certainly F' given by

F(b) := sup(ab — G(a)) (%x)

a>0

works, since then
G(a) + F(b) > G(a) + ab — G(a) = ab.

So we need to find the supremum in (x%). If G(a) = %ap and 1 < p < oo, then
G(0) =0 and limg_ 0 (ab — G(a)) = —oo so there will be a point a (depending
on b) for which a — ab — G(a) is maximal.

At this point the derivative

dia(ab ~G(a))=b—G'(a) =b—aP™!

must be zero = a = b1/P—1),
= F(b) = ab— 1ap =a(b— 1a”_l)
D p

1
= b (b — ~b) = bt L =

P p—1 q
with ¢ = p}%l' O
Proof of Lemma 4.3. Let (z,,)n € P and (yn)n € 19,1 < p < 00, g dual exponent
of p.
The cases p =1 or p = oo are easy (do them!).
Solet 1 < p < oo.
Step 1: Assume [lall, = 1 = y],- Then

-yl < 1.

Indeed,

00 0o
2= ylle <D eaynl =D [nllyn]
n=1 n=1

and by Lemma 4.4

1 1
_ np‘i’* nq
%MI qw\)

]2

<
1

3
Il

1
lzlly + vl
1
=-4-=1
p q

Step 2: Assume x # 0,y # 0. Then

e

1l Nyllq

= =112 - gl
[llpllyllg
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with & = (Hiﬁp)n,gj = (Hz—l”‘q)n
Note ||Z|l, = 1 = [|gllq- So by Step 1

1z gl <1,
hence
-yl = lzllpllyllallZ - gl < llzllpllylq-
O
Theorem 4.5. The spaces (IP(N), |- ||,) are Banach spaces, i.e., they are com-
plete.

Proof. Only completeness remains: we do only 1 < p < oo.
We write z = (2(j)),en € IP(N).

So let (), C IP(N) be Cauchy.

Step 1: A candidate for the limit: Fix j € N and consider

1

20 (3) = 2 |<(Z|xn —emOF)" = 20 = 2mlly

= (1,(j))n C F is Cauchy. By completeness of F z(j) := lim,, 00 2, (j) exists.
Step 2: x € IP(N)!
Idea:

|x||p—2|a: |p—z hm |z, (7)) = ¢ hm Z|xn )P < o0.

\—,_/

lznl?

Let L € N. Note that

P —
2l Zn&n;lxn

||Mr«

o -
= Igg{gle ENG]
J=

< liminf ||z, ||} < oo
n—oo

Thus, using the monotone convergence theorem, we conclude that

o0

Pf P<

Z JIF = Jim Zu )P < (liminf [|a, )7
= [lz]l, < liminf [z, |,

sox € P!
Step 3: x,, — x in [P: Given € > 0, there exists

NeN: |z, —znlp<e VYn,m>N.
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Let L € N.
L L
D l2() = za(G)P = Jm D (5) — zn ()P
Jj=1 j=1
< limsup ||z, — xn”?
m—0o0
< P for n large enough
= forn > N:

L
|z = anllf = lim 3 7z (G) —zn()IP < e
j=1

or ||z — x|, < e for all n large enough!

5 Hahn-Banach type theorems

5.1 Some preparations

Definition 5.1. Let (X, ||-||x), (Y, ||:|ly) be normed vector spaces. A continuous
linear map T : X — Y is called operator. If Y = R or C we call them
functionals.

Lemma 5.2. Let X,Y be normed vector spaces and T : X — Y linear. Then
the following are equivalent (t.f.a.e.):

(a) T is continuous.

(b) T is continuous at 0.

(¢) AM >0 ||Tz|ly < M|z|xVe e X.
(d) T is uniformly continuous.

Proof. (¢) = (d) = (a) = (b) is easy.
E.g.: (¢) = T is Lipschitz continuous, since

[Tz = Txolly = 1T (z — 2o)lly < M|z - zo] x-

So we only need to show (b) = (¢). Assume that (c¢) is wrong = Vn € N3z, €
X ||Tzplly > nllzn|lx = @n # 0. Then

Yp 1= _In — 01in X.
nflzn|x
But
Tx
[ Tyally = 12l
[E 1P

so Ty, - 0, so T is not continuous at 0, a contradiction. O]
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Definition 5.3 (Operator-norm). Given T : X — Y linear
1T\ = ||T|| x>y :=inf(M > 0|||Tz|ly < M|z|x for all x € X)

defines the operator-norm of T.

Note:
Tz Y
(IT]| = sup Tz = sup |[Tz|ly = sup ||Tz|y.
a0 [1Zllx  jajx=1 lzllx <1
and
[Tzlly <|T|ll=] VzeX. (I.1)
._ [T
Indeed, let My := sup, 4, ||w\|xy
Tx Y
ITally = W 1 < Ml
]l x
= [|T]| < Mo.

On the other hand: given £ > 03z, # 0 :
[Telly = Mo(1 =€)zl x

= ||T|| > Mo(l—e) Ve<O

= Tl = Mo
and thus ||T']] = My, so (I.1) holds.
Definition 5.4. Let X,Y be normed spaces.
L(X,Y):={T: X = Y|T is linear and continuous}
1S again a vector space.

(S+T)(x):=Sx+ Tz,
(M) (z) := ATz.

Proposition 5.5. (a) [|T'|| = supy, <1 |Tz|ly defines a norm on L(X,Y).
(b) If Y is complete, then L(X,Y") is also complete.
Proof. (a) Looking closely reveals

AT = ATl

IT|| = 0= T = 0 (the zero linear map).
Triangle-inequality:

[S+T| = sup [[(S+T)z|y
2| x <1 N ——
=||Sz+Tx|ly

llzllx <1 llzllx <1

< sup |[Szlly + sup |[|Tzlly

= 151+ I1T1l-



5. HAHN-BANACH TYPE THEOREMS 29

(b) Let (T,)n C L(X,Y) be Cauchy = for fixed z € X (T),z)y,, is Cauchy in V!

[Tnz = Tnlly = [(Tn = Ton)zlly < [[Tn = Tl ]| x-

By completeness of Y = Tz := lim,,_,~, T,z exists.
Step 1: T is linear. Indeed

T()\331 + pxs) = nll_}n;o Tn()\CC1 + uxs)
ATy z1+pThas
=\ lim Tz, + p lim T,x9
n—oo n—oo
=Nz, + pTx,.

Step 2: T € L(X,Y), i.e., |T|| < oo and ||T — T, || — 0.
Indeed, let € > 0 and choose N; € N so that

||Tn - Tm” <& Vn,m 2> Ni.
Let x € X, ||z]|x < 1. Choose N := N.(g,z) > Ny so that
[Tn.x—Tally <e

Thus, for every € X with |z]|x < 1:

[Thz — Tz|y < |Tha — Tn. x|y + | Tn.x — Tally
—_— —
:H(Tn_TNE)JHYS”TH_TNSH”wllxguTn_TNEH <e

< | T —Tn.|| +e
—————
<e,n>Ny

< 2¢ for all n > N

ITally < |Tuz — Tally + |Taally < 2e + |Tall < o0
IT =T, = sup ||Tx— Thx| < 2¢ for all n > Ny,
1

llzllx <

so T,, — T in operator norm.
O

Definition 5.6. Given a normed vector space X, its dual space is the space
X' = X*:= L(X,F) of continuous linear functionals.

Corollary 5.7. For any normed vector space X, its dual X' equipped with the
norm

l'|lxr := sup |2'(2)| = sup |o'(x)|

llzllx <1 [l x=1

1s a Banach space.
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5.2 The analytic form of Hahn-Banach: extension of lin-
ear functionals

Definition 5.8. Let E be a vector space. A map p: E — R is sub-linear if
(a) p(Ax) = Ap(x), YA >0,V € E.
(b) p(z +y) < p(x) +p(y), Vo, y € E.
Example 5.9. (i) Every semi-norm is sub-linear.
(i) Every linear functional on a real vector space is sub-linear.

(i1i) On1=°(N,R) = bounded real-valued sequences, t = (t)n — limsup,, .t
is sub-linear.
On I (N,C), t = (t)n — limsup,,_, ., Re(t,) is sub-linear.

(iv) A sub-linear map is often called Minkowski functional.

Theorem 5.10 (Hahn-Banach, analytic form). Let FE be a real vector space,
p: E — R sub-linear, G C E a subspace, and g : G — R a linear functional
with

g(x) < p(x) Vz € G.

Then there exists a linear functional f : E — R which extends g, i.e., g(x) =
f(x) VYx € G, such that

f@) < p(x) Vo € E.

For the proof we need Zorn’s lemma, which is an important property of
ordered sets.
Some notations:

e Let P be a set with a partial order relation <. A subset @ C P is totally
ordered if for any a,b € @ either a < b or b < a (or both!) holds.

e Let () C P, then ¢ € P is an upper bound for @ if a < ¢ for all a € Q.

o We say that m € P is a maximal element of P if there is no element
x € P such that m < z except for x = m.
Note that a maximal element of P need not be an upper bound for P!

e We say that P is inductive if every totally ordered subset Q C P has an
upper bound.

Lemma 5.11 (Zorn). Every non-empty ordered set which is inductive has a
mazimal element.

Proof of Theorem 5.10. We say that h extends g if
D(h) D D(g) and h(x)=g(x)Vx € D(g).
Consider the set

h:E>D(h) - R| D(h)is a linear subspace of F,
pP= h is linear, G C D(h), h extends g,
h(z) < p(x) VYx e D(h)
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Note: P # () since g € P!

On P we define the order hy < hy <= hy extends h;.

Step 1: P is inductive.

Indeed, let @ C P be totally ordered. Write @ = (h;);er and set

D(h) := U D(h;), h(x):=hi(z) if © € D(h;) for some i € I.
icl

It is easy to see that this definition is consistent and that h is an upper bound
for Q.

Step 2: By Step 1 and Zorn’s lemma, P has a maximal element f € P.

Claim: D(f) = E (which finishes the proof).

Assume that D(f) # E. Let ¢ ¢ D(f) and set D(h) := D(f) + Rz and for
x € D(f) set

Mz +txo) == f(z) +to, tER,
where we will choose a so that h € P. For this we need
f(z) +ta < p(z + txg). (1.2)
Let ¢ > 0. Then
(1.2) <= ta <p(z+tx) — f(x)
= asgpa i) - 1 f@)
p(5 +w0) = £(3)

= p(u+ o) — f(u),

T
t

where © := £

=
If t <0, then
(I1.2) <= ta <p(x+txy) — f(z)

— —a< _itp(x—kta:o) - _itf(x)
ZP(jt + x0) — f(jt)
= p(w + zo) — f(w)

— az f(w) —p(w— o),

where w := ;.

Thus (I.2) holds if
f(w) = p(w —20) < & < p(u+x0) — f(u) Yu,w e D(f). (L3)
Since f € P, we have
f(@) <plx) VaeD(f)
Hence Yu,w € D(f) it holds
fu) + f(w)

—~

flu+w)
U+ w)
u—+ x4+ w— xg)

u+ x0) + p(w — 7o)

IN

—~ o~

p
p
p

IN
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SO

f(w) = p(w = x0) < p(u+x0) — f(u)
and hence (I.3) holds with the choice

a= sup (f(w)—p(w— o))

weD(f)
We have shown: If D(f) # E, then we can extend f by h, i.e., f < h but this
contradicts that f is a maximal element of P! O

To extend Hahn-Banach to complex vector spaces, we need
Lemma 5.12. Let X be a C-vector space.
(a) Ifl: X — R is R-linear, i.e.,
I(Az1 4+ Aoxe) = Al(x1) + Aol(z2) Vap,xz0 € X, A, A0 €R
then
lz) :=l(x) —il(iz), z€X
defines a C-linear functional [ : X — C and | = Re(l).

(b) If h : X — C is C-linear, then | = Re(h) is R-linear and if 1 is as in (a),
then h =1[.

(c) If p: X = R is a semi-norm and | : X — C is C-linear, then

()] <plz) € X < |Re(l(x))] <p(zx) z € X.

(d) If || - || is a norm on X and l: X — C is C-linear and continuous, then
12l = (1 Re(DIl-

Remark 5.13. Thus the map | — Re(l) is a bijective R-linear map between the
space of C-linear and R-linear functionals and if X is a normed vector space, it
is an isometry.
Proof of Lemma 5.12. (a) Let [ be R-linear and I(z) = I(z) — il(ix). Since
x — 1z is R-linear, we have that [ is R-linear and, by construction, Re(l) = 1.
So we only need to check I(iz) = il(x).
I(iz) = I(iz) — il(iiz)
= (iz) —il(—x) = l(iz) + il(z)
=i(l(z) —il(iz)) = il(z).

(b) If h is C-linear, then | = Re(h) is R-linear.
Since Imz = —Re(iz) Vz € C, we have
h(z) = Reh(z) 4+ iImh(x)
= Reh(zx) — iRe(ih(x))
= Reh(z) — iRe(h(ix))

=l(z) —il(iz) = l(z).
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(¢) Vz € C:|Re(z)| < |z| so 7= holds.
7<% Let x € X and write I(z) = Al(z)| for some A = A(z) with |A| = 1.
Then

[(z)| = 27 (z) = 1(A" )
S0)
ll(x)] = Re|l(z)| = Rel(A\'2) < |Rel(A ')
<p(\'z)=p(x) VYreX.
(d) Follows immediately from (c).
O

Theorem 5.14 (Hahn-Banach, complex form). Let E be a complex vector space,
p: E — R sub-linear, G C E a subspace, and l : G — C a linear functional with

Rel(x) <p(z) Vzeq.
Then there exists a linear functional h : E — C which extends | with
Reh(z) <p(z) VrekE.

Proof. Consider G C E as a real vector space and Rel : G — R as a real
functional. By Theorem 5.10 there exists and extension f : E — R of Rel with
f(z) <p(z) Yz € E. By Lemma 5.12, the functional

Wx) = f(x) —if (iz)
is C-linear and
Reh(z) = f(z) <p(x) VreFE
and h(z) = l(x) Vz € G. O

Corollary 5.15. Let F =R or C. Let X be a normed vector space and U C X

a linear subspace. Then for every continuous linear functional g : U — T there
exists f € X' such that

flo=g and  sup [f(x)] = [If] =gl = sup [g(z)],

r€EBx rEBy

where

By ={z e Ul||z|| <1} C Bx = {z € X]|||z| < 1}.

Proof. Step 1: Let X be a real normed vector space. Put ||g|| := sup,cp,, |g(x)
and

p(x) := llgllllz[-
By Theorem 5.10 there exists f: X — R which extends g and

flz) <p(r) VrelX.
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Since

—f(@) = f(=z) < p(—=x) = p(x)

one has | £(z)| < p(z) Vo € X and so ||| < gl
On the other hand

lgll = sup [g(z)] = sup |f(z)| < sup [f(z)]=|fl
x€By r€By zEBx

Step 2: If X is a complex vector space, apply Step 1, now combined with The-
orem 5.14, to get a linear functional f : X — C with

flo =g and [[Ref[| = ||g]l

By Lemma 5.12 (d) we get || f]| = ||Ref]|. O

Corollary 5.16. In any normed vector space X to every xog € X there exists
fo e X\ foll = 1, fo(xo) = ||xol|. In particular, X' separates the points of X :
VCIJhZL’Q (S X,(L'l 7é To = E'f (S X' f(l’l) 7& f(iCQ)

Proof. By Corollary 5.15 we can extend linear functional g : Fzg — F,g(\) =
A|lzo]] to X and preserve its norm.
If 1 # o, consider z = x7 — x2 # 0. O

Corollary 5.17. Let X be a normed vector space. Then it holds

lzllx = sup{lf(z)| |f € X', | fllx <1} VaeX. (L4)

=:a

Proof. By definition of || f|x-

@] < flxllzllx < llzllx - = a<z]x.

By Corollary 5.16, there exists fo € X’ such that || fo||x = 1 and fo(z) = ||z]|
=a < ||z O

Remark 5.18. Note the symmetry of (1.4) with

[ fllxr = sap{|f(@)[ | [l=]x <1}.

5.3 Geometric form of Hahn-Banach

In the following, let E be a normed vector space.

Definition 5.19. An affine hyperplane is a subset H C E of the form
H ={x € E|Ref(z) = a}
where f is a linear functional on E which is not identically zero, o € R.
H=[Ref=aqa], or Ref=«a

is the equation of H.
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Proposition 5.20. The hyperplane H = [Ref = a] is closed <= f is
continuous.

Proof. "<=": clear.

"=": H is closed = H°€ is open. Pick 2o € H® with Ref(zg) < a. Thus
Ir > 0: By(x9) C H.

Claim: Ref(z) < aVz € B,(z).

Assume 1 € B.(x0) : Ref(z1) > «

= [xo, 1] = {xr = (1 — t)axo + tay|t € [0,1]} C B, (20)
s0, since By (xg) C H® = Ref(x:) # « for all t € [0,1]. But if

Ref(z1) — «

"= Ref(m1) — Ref(zo)

= Ref(zg) = «,

a contradiction. So Ref(z) < a Vr € By(xo).
Let z € E, ||z|| < 1. Then

Z=ux9+rz € B(zg) = Ref (%) <
——
—rRef(2)+Ref(zo)

= Ref(z) < %(Ox — Ref(wo))

and
Ref(~a) = ~Ref(r) > (o ~ Ref(xo)).
So
[Ref(2)| < + (o — Ref (o))
ie.,
[fIl = llRefll = sup |Ref(x)| < 1(04 — Ref (o)) < o0
l=l<1 T

so f is continuous. O

Definition 5.21. Let A,B C E. H = [Ref = «] separates A and B if
Ref(z)<a VYxe A and Ref(zr)>a Ve B.
H strictly separates A and B if there exists € > 0 such that
Ref(x)<a—e YereA and Ref(z)>a+e VreB.
A C E is convex if Vri,29 € A

21, 2] = {(1 — t)zy + tzo|t € [0,1]} C A.
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Theorem 5.22 (Hahn-Banach, first geometric form). Let A, B C E, A, B # 0,
conver, ANB = () and one of them be open. Then there exists a closed hyperplane

H which separates them.

We need two Lemmatas:

Lemma 5.23. Let C C E be open and convex with 0 € C. For x € E set

p(z) = inf{a > 0la™ 2 € C}  (gauge, Minkowski functional).

Then p is sub-linear and

IM <o0:0<p(x) < Mlz| VxekFE

C ={z € E|p(z) < 1}.

Proof. Step 1: Clearly p(Azx) = Ap(z) Vx € E, A > 0.
Step 2: Ir > 0: B,(0) C C (C is open). Thus VZ € B,.(0)

p(7) <1
soif z € E\ {0} and 0 < § < r we have

. T

B, (0)
=12 p(@) = pl(r ~ ) ) = r 6)@)(@

]l

r—20

p(x) < p(Z) Ve eFE

1
§—=>0=p(x) < ;||x\| Ve e E

so M = % works.

Step 3: C = {z € E|p(x) < 1}.

Indeed, let z € C. C is open = (1 +¢)x € C for small enough ¢

1
<— <1
:>p(x)_1+5< Ve e C

=Cc{p<l1}.
Conversely, if p(z) < 1
Ja e (0,1): L ec.
a

0eC,Cconvex =r=0af+(1-a)0cC=zcC.
Step 4: Vz,y € F: p(z +y) < p(x) + p(y).
Indeed, let € > 0, A = p(x) — &, p = p(y) + € and note

T Yy
—eC, ZeC
1 €0 ue

(L5)
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since

z, 1 p(z)
—_) = — = 1
p(5) = jple) = B0 <
C’(Convex)a/\j\_ § —l—/\M g —i::__yéc
[ +u p [
€c €c
r+y
= 1
(A+u)

=plz+y) <A+p=p)+ply) +2 Ve>0

= p(z +y) < plz)+ p(y).
O

Lemma 5.24. Let C C E,C # 0, conver, zg € E\ C. Then there exists
f€E :Ref(x) < Ref(xo) Ve € C.

Proof. Step 1: F = R.
By translation: we may assume 0 € C. Let p be the Minkowski functional for
C,Gd=Rxp,g:G—R

g(tzo) :==1tp(xg) te€R

= g(z) <p(x) Vred.
By Theorem 5.10 3 linear functional f on E which extends g and
f(x) <p(z) VzeE.
In particular, f(xg) = p(zo) > 1, and by (I1.6)

f(2) < p(a) < Mlja|| Vo B

|f(z)| < M|z|| VxeFE
so f is continuous.

I7) = fz)<plx)<l Vexel

= f(z) # f(zg) VreC.

Step 2: F = C . Use Step 1 and Lemma 5.12. O
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Proof of Theorem 5.22. A, B # () convex, AN B =, A open.
C:=A-B={zx—ylre€Ayec B}

is open (C' = Uyep (A —y)) and convex (check this!). 0 ¢ C (AN B = 0). By
~———

open

Lemma 5.24 there exists f € E’ with

Ref(z) <0 VzeCl
Ref(r—y) <0 VreAVyeB
Ref(x) — Ref(y) <0 Ve A VyeB

= Ref(z) < Ref(y) Vxe AVye€ B.
Take a = sup,c 4 Ref(x)
= Ref(z) <a < Ref(y) Vxre A VyeB.
O

Theorem 5.25 (Hahn-Banach, second geometric form). Let A,B C E, A, B #
0, convex, ANB = 0, A closed, B compact. Then there exists a closed hyperplane
that strictly separates A and B.

Proof. C := A— B = {x —ylz € A,y € B} is convex and closed (why?), and
0¢ C=3r>0:B.(0)NnC = 0. By Theorem 5.22, there exists a closed
hyperplane H which separates C' and B,.(0). So there exists f € E*, f # 0, such
that

Ref(z —y) < Ref(rz) =rRef(z) Vze A,ye€ B,z B(0).
Since

inf Ref(z)=— sup [|Ref(z)|=— sup [f(2)|=—|f]| <0

z€B1(0) 2€B1(0) z€B1(0)

= Ref(z) — Ref(y) < —r|fll Vxe€e A,ye B

& Ref(a) + || fll < Ref(y) = 5l fll VzeAyeB.
——

Choose o = sup,c 4 Ref(x) +¢
= Ref(z)+e<a<fly)—e VreAychB.
So H = [Ref = a] strictly separates A and B. O

Remark 5.26. Assuming only that A, B are convez, # 0,AN B = 0 it is in
general impossible to separate A and B by a closed hyperplane (except when E
is finite-dimensional).
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Corollary 5.27. Let F C E linear subspace such that F # E. Then there
exists f € E*, f # 0 such that f(x) =0Vx € F.

Proof. Let xg € E\ F, so xg ¢ F. Let A= F,B = xy. By Theorem 5.25 there
exists a closed hyperplane H = [Ref = a] which strictly separates F' and {xo}

= Ref(r) < a < Ref(zg) VxeF.
Since F'is linear: x € F = Ax € FYAeR

= ARef(z) < a < Ref(xg) Vre F,YAeR
= Ref(x) =0 VaxeF (why?)

= 0= Ref(—iz) = Re(—if(z)) = —Re(if(z)) = Imf(z) VzxeF
f(x)=0 VxeF and Ref(zg) > 0.
O

Remark 5.28. The main use of Corollary 5.27 is in the reverse direction: If
every continuous linear functional f which vanishes in the subspace F C E also
vanishes on E, then F' is dense in E!

6 The Baire Category theorem and its applica-
tions

6.1 The Baire Category theorem

Recall that E C M is dense in M if E = M.

Definition 6.1. Let (M,d) be a metric space.

(a) E C M is nowhere dense if E has empty interior, i.c., (E)° = int(E) = ().

(b) F C M is meager (or of 1st category) if it is the countable union of nowh-
were dense sets, i.e., there exists (F,), of nowhere dense sets such that

F=,en Fu.
(c) F is fat (or of 2nd category) if F is not meager.
(d) E C M is generic if E° is meager.
Note:
e A nowhere dense set is in no open set dense.
e In (b) we can always assume that F,, = F),.
o F = {x},x € M is nowhere dense. So Q is meager in R.

Theorem 6.2 (Baire). Let (M,d) be a complete metric space.
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(a) If for n € N, F,, C M is closed and nowhere dense, then

( U F,)° = int( U F,) =0.

neN neN

(b) If for n € N,0,, C M is open and dense in M, then (), oy On is dense in
M.

Remark 6.3. (a) says that in a complete metric space, meager sets are nowhere
dense.

(b) says that in a complete metric space, a generic set is dense.

Proof of Theorem 6.2. Step 1: (a) < (b).
Indeed, note that for any £ C M one has

int(E°) = E¢ (why?) (L.8)
Thus if (a) holds, O,, C M open and dense = F,, := O¢ is closed and nowhere

dense.
(Mo =Uoi=Ur,

neN neN neN

has empty interior, so

0 = int(( ﬂ 0,)%) é(m)c

neN (1.8) neN

50 (pen On = M.
Conversely, if (b) holds and F' is meager, F' =
dense, O,, = F¥ is open and dense. By (I ) (

O, is dense in M
= (10n=M so 0=([)0n)°
neN neN

int(([) On)°)

neN

= int(| J 05)

neN

=int(| ) Fn)

neN

N Iy Fp closed and nowhere

Une
0,)¢ = int(0%) = intF, = 0, so

o (a) holds.

Step 2: (b) is true: Let O,, C M open and dense, and set D := (1, .y On

So it is enough to show that every open e-ball in M contains an element in D.
01 is open and dense = O1NBe(xg) # 0 = Jx; € O1NB-(xp) and 30 < g1 < %5
such that

Bﬁ(ﬂjo) C BQel (.131) cO1n Bg(l‘o).

Now consider Oy which is open and dense. As above = 02 N B, (z1) # 0, so
dzy € 09,69 < %51 such that

Bg(ﬂ?z) C BQ&-Q (xz) C Og N 01 N Bg(ﬂjo).

Continuing inductively, there exist sequences (gp)n, (Zn)n such that
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(1) 0<e, < %sn_l, in particular €, < 27 "¢
(2) Be(zy) C Bac, (zn) C 0, N B, (xp_1) T+ CO1NO2...0, N B:(xp)
for all n € N. In particular, ,, C Bey (zn) C Ba-n~ (x0) for all n > N.
= (zn)n is Cauchy, M is complete, so z = limz,, € M exists
= 2 € Bex(rn) VN €N
So DN B.(xg) # 0 Ve >0,z9g € M, so D is dense in M. O

Corollary 6.4 (Baire). Let M be a complete metric space, (Fy,), C M closed
such that M = UneN F,. Then there exists ng € N :intF,, # 0. So a complete
metric space 1S not meager.

Proof. F, is closed. If intF,, = (), by Theorem 6.2(a), F' = {J, oy Fn has empty
interior, so M = F has empty interior, but M° = int(M) = M, a contradiction.
O

6.2 Application I: The set of discontinuities of a limit of
continuous functions

Theorem 6.5. Assume that (fn)n : M — C are continuous, M is complete
metric space and

f(@):= lim f,(z)

n—oo

exists for all © € M. Then the set of points where [ is discontinuous is (at
most) meager. In other words, the set of points where f is continuous is the
complement of a meager set, in particular it is dense.

Proof. Let D = set of discontinuities of f. The oscillations of the function f at
a point x are

osc(f)(x) := lim w(f)(r,x) = inf w(f)(r,z)

0 r>0

with w(f)(r, ) :=sup, .ep, (2 [f(y) — f(2)] (which is decreasing in r).
So osc(f)(xz) < e <= 3T ball B centered at = with |f(y) — f(2)] < e Vz,y € B.
Note also

ose(f)(x) =0 <« fis continuous at (1.9)

Ve >0 E.:={x € M|osc(f)(x) < e} is open (1.10)
(1.9) is immediate and for (I.10) note that if € E. there exists r > 0 with
sup  |f(y) = f(2)] <e.

y,2€ By (x)

So if € B () then & € E; since B: () C B:(x) and hence

sup [f(y) = f()| < sup |f(y) = f(2)] <e.

Y,2€B (Z) y,2€Be ()

Thus B (%) C Ee, so E. is open.
‘We need one more
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Lemma 6.6. Let (f,)n be a sequence of continuous functions on a complete
metric space M and f,(x) — f(x) Vo € M. Then given any open ball B C M
and e > 0, there exist an open ball By C B and m € N such that | f(2)— f(2)] <
eVo € By.

Proof. Let Y be a closed ball in M and recall that Y is itself a complete metric
space. Define

Ep:={z €Y|sup |fj(x) — fe(z)] < e}
7,k>1

= ﬂ {z e Y| |fj(x) — fu(x)] <e}.

gkl

closed since f,, is continuous

So E; is closed and since f,(z) = f(z) Vo € M we have Y = U E;.

By Corollary 6.4 applied to Y, some set, say E,,, must contaln an open ball By.
But then

sup |fj(z) — fr(z)] <e Vx € By
7,k>1

and letting £ — oo one sees

|fm(2) = fr(z)| < e Vz € By.

To finish the proof of Theorem 6.5 define

F, = {x € Mlosc(f)(z) >

2

So F, = ES (from (1.10)) so F, is closed and D = {J

discontinuities of f.

Final claim: Each F,, is nowhere dense!

Indeed, if not, let B be open ball with B C F},. Then setting ¢ = —n in Lemma
6.6, we get an open ball By C B and m € N such that

3=

nen I is the set of

fn() — f(a)] < ﬁ Ve € By,

fm 1s continuous = 3 ball B’ C By such that

Fn®) = (2 < = Vo2 € B

Then
Lf (W) = ) < 1f@) = fm@)] + [ fin(y) = fin(2)| + | fn(2) = f(2)]
Sﬁ+%+%f%< 1 Yy,z € B'C B C F,.

So if 2’ is the center of B’ then
1
osc(f)(z') < —,

n

which contradicts ' € F,! O
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6.3 Application II: Continuous but nowhere differentiable
functions

Consider the complete metric space C([0, 1]) with norm || f||oc 1= sup,ejo 17 [f(2)]
and metric d(f,9) = ||f — 9lco-

Theorem 6.7. The set of functions in C([0, 1]) which are nowhere differentiable
is generic (in particular, it is dense!).

Proof. Let D = set of functions f € C([0,1]) which are differentiable at at least
one point. We have

Dc U {f € C([0,1])|Fz* € [0,1] : Vx € [0,1]| f(z) — f(z™)| < N|z —z*|}
NeN

=:FEN
(L11)

Claim:

(a) En is closed.

(b) Ey is nowhere dense, i.e., it has empty interior.
Then Theorem 6.2 yields the claim.

Proof of (a). Let {f,} C En with f, — f. Let z} be the point for which (I.11)
holds with f replaced by f,. [0,1] is compact = 3(x}, ) which converges to a
limit «* € [0,1]. Then

[f (@) = fa)] < |f (@) = fa (@) + [fng (2) = S (@) 4 [ fy (27) = f(@7)].

(I.12)
Since || fn — flloo = 0, for € > 0 3K such that
k> K [f(@) = fu (@) <5 and [f (@) = f@)] < 3.
For the middle term in (I1.12) note that f,, € En so
[ (@) = S (@) < i (2) = foi (2 )] + [ i (27,) = Frui (7))
< Nlz -y, |+ Nlz,, — x|
and so
[f(2) = f(z")] < e+ Nz — 23, [+ Nla;, — 27|
—e+|lzr—a*|+N-0 ask — oo.
O

Proof of (b). Let P C C([0,1]) be the subspace of all continuous piecewise linear
functions. For 0 < M let Pyy C P be the set of continuous piecewise linear
functions with slope > M or < —M. Think of Py as the set of "zig-zag“
functions!

Key fact: Pyy N Ey =0 if M > N!

Lemma 6.8. VM > 0 Py is dense in C([0,1]).
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Now we finish the proof that Exn has no interior points: Let f € En and
e > 0. Fix M > N, then 3h € Py with ||f — h|| < € and h ¢ Ey since
Py NEy =0 when M > N. So no open ball around f is entirely contained in
E,, i.e., Exn has no interior. O

Proof of Lemma 6.8. Step 1: P is dense in C([0,1]): Let f € C([0,1]). Then
f is uniformly continuous, since [0,1] is compact. So there exists g € P with
IIf — gll <e. Indeed, since f is uniformly continuous 36 > 0 such that

|f(x) = fly)l <& V]z—y[ <3

Choose n € N such that % < 0 and let g be the piecewise linear function on
each interval [£ Etl) = 0,... ,n— 1 with g(£) := f(&), g(Et) == f(EEL)

and linearly interpolated in between. Then ||f — g|| < &!
Step 2: Py is dense in P: Let g(z) = ax + b for 0 <2 < % and

pe(x) = g(x) +e, e(z) =g(x) —e.

Begin at ¢(0), travel a slope +M until you intersect ¢.. Reverse direction and
travel on a line segment of slope —M until you intersect .. This yields a
function h € Py; with

Pe(x) < h(z) < pe(x) VO <z <

SRS

o)~ h(a)| << n [0, 2]

Then begin at () and repeat the argument on the interval [, 2] and continue
in this fashion.
= get a function h € Py with [|g — k|| <e. So [|f — Al < 2¢ O

O

6.4 Application III: The uniform boundedness principle

Recall: Let E,F be normed vector spaces. L(E,F) = vector space of all
bounded linear operators 7' : E' — F with the norm ||T|| := sup,ep |4, <1 1T7]-

Theorem 6.9 (Banach-Steinhaus uniform boundedness principle). Let E be a
Banach space and F be a normed vector space, (T;)icr be a family (not neces-
sarily countable) of continuous linear operators, T; € L(E,F) Vi € 1. Assume
that

sup | Tiz|| < oo Vx € E. (1.13)
iel

Then

sup | T3] < oo, (1.14)
icl

i.e., IC < o0 : | Tiz|| < C||z|| Vo € E,Vie 1.
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Remark 6.10. The conclusion of Theorem 6.9 is quite remarkable and surpris-
ing. Just having the pointwise estimate sup,c || T;x| we get sup, e supy, <1 |75z <
0.

Proof. ¥n € N let
F, :={z € E\Vi e I, ||T;z| <n}.

F,, is closed and | J,,cy Fn = E. By Corollary 6.4 = 3Im € N : intF,, # (. Then
dxg € Fip,7 > 0, Byp(x0) C Fy,. Then

[Ti(xo +r-2)[| <m, |z <1

= IT)) = T2l = =T +r2) — o)

IN

1 1 2m
— | Ti(wo +r2)| +- ITi(zo)|| < — Vz € B, 2] < 1.
[ e e Y A r

<m <m

O

Corollary 6.11. Let E, F be Banach spaces, (T),), C L(E,F) such that for
Vo € E,T,x converges and let Tx : lim,,_,oo T,x. Then

(a) 5up, e [ Tull < .

(b) T € L(E, F).

(¢) IT]| < limintmo |70

Proof. (a) Follows from Theorem 6.9 immediately.
(b) Also follows from Theorem 6.9 immediately.
(©)

[Tz = | Tnzl| < Cllz]| V2 € E
IT||  [[Tol| < | Tnlll]

[T < lim inf || 7,
O

Corollary 6.12. Let B C G and G be a normed vector space (not necessarily
complete). Then the following are equivalent

(a) B is bounded.

(b) f(B) is bounded for Vf € G*.
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Proof. (a) = (b) is obvious.
(b) = (a): Recall that G* is a Banach space.
For x € B and f € G* let T,.(f) := f(x), Tx(f) is linear and bounded, because

sup [T (f)| < [lzl[lf]] < [l=]]-
FeGx[IflI=1

By Theorem 6.9 and (b) with E = G*, F =F and I = B, we conclude
1T () < CllfIl Vo e B,Vf € G"
Then for Vx € B

[zl = sup |f(z)l= sup |Tu(f)] < Cfl|.
feG fI<t feG sl

O

Notation: (zy), C E converges weakly to z € E (z, — z) if Vf € E* it
holds f(x,) — f(x).

Corollary 6.13. Weakly convergent sequences are bounded.

Proof. If (x,), converges weakly, then for any f € E* (f(x,)), is bounded.
The result follows from Corollary 6.12. O

Corollary 6.14 (Statement dual to 6.12). Let G be a Banach space and B* C
G*. Then the following are equivalent

(a) Vx € G the set B*(x) := {f(x)|f € B*} is bounded.
(b) B* is bounded.
Proof. (b) = (a) is obvious (M, || f|| < M Vf € B*).

(a) = (b): We apply Theorem 6.9 with F = G,F = F,I = B*. For every
f € B* we set Ty(z) := f(x), z € G. Due to (a) and Theorem 6.9 3C < oo

|[f(z)| =|Tf(x)| < Clz|| VfeB*zed.
By definition

Ifll="suwp [|f(z)|<C VfeB,

z€F||lz|| <1

i.e., B* is bounded. O

6.5 Application IV: The Open Mapping and the Closed
Graph theorems

Theorem 6.15 (Open Mapping). Let E, F be Banach spaces and T € L(E, F)
be surjective. Then there exists C' > 0 such that

T(BE(0)) o BX(0). (I.15)
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Remark 6.16. Property (1.15) ensures that the image under T of any open set
m E is open in F'.

Indeed, let U be open in E. Fix yo € T(U) so yo = Txo, 20 € U. Let rg > 0
be such that By,(xg) C U. Due to Theorem 6.15 it holds T(By,(0)) D Bery(0)
(use linearity).

Bero(y0) = Yo + Ber, (0) C T'(x0) + T'(By, (0))

C
= T(x0 + By, (0)) = T(By, (x0))
cU

= T(U) is open.

Corollary 6.17. Let E, F be Banach spaces, T € L(E, F) bijective (i.e., injec-
tive and surjective). Then T~ € L(F, E).

Proof. Obviously, T~! exists and it is linear. By (I.15)

T-'T(BE(0)) > T~*BE(0)

= BF(0) > T7'B.(0).

Soify e F, |yl <C= [T ' (y)| <1

1
= Ty < =, <1
1Tyl <& vl <

1771 < 1.
O

Corollary 6.18. Let E be a vector space with two norms | - ||1,| - ||z and
assume that E is complete w.r.t. either norm and there exists C' > 0 such that
|zl < C|lz|1 Yo € E. Then the two norms are equivalent, i.e., there exists
Cy > 0 such that ||z||1 < Ci|z|2 Yz € E.

Proof. Apply Corollary 6.17 with E = (E, || - |1), F = (E, || - ||2),T = Id. O

Proof of Theorem 6.15. Step 1: Assume T is linear surjective operator from E
onto F. Then there exists ¢ > 0 such that

T'(B1(0)) D B2c(0). (1.16)
Indeed, set
F,, :=nT(B1(0)).

T is surjective = F = J;2 | F,,. So by Baire there exists m € N : int(F,,) # 0.
By linearity int(T(B1(0))) # 0!
Pick ¢ > 0 and yo € F' such that

B4c (yO) - m7
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in particular

yo € T(B1(0)). (1.17)
By symmetry

—yo € T(B1(0)). (1.18)

Adding (I.17) and (I.18) we get

By:(0) C T(B41(0)) + T'(B1(0))

and since T'(B1(0)) is convex,

T(B1(0)) + T(B1(0)) = 2T(B1(0))

so (1.16) holds.

Step 2: Assume T € L(E, F') and (1.16) holds. Then (I.15) holds, i.e. T'(B1(0)) D
B.(0). Indeed, choose any y € F, ||y|| < c.

Aim: Find some € F such that ||z|| < 1 and Tz = y (because then (I.15)
holds! (why?)).

By (I1.16) we know that

Va>0 and g€ F with ||y < aC
3z €F with ||z]| < % and ||j — Tz < . (1.19)

(Hint: Use (I1.16) and linearity to see this)
Choosing € = £ we find 2; € E such that

2

1 1
Il < 5 and ly =Tz < 5C.

Now apply (1.19) to § = y — Tz. Since ||§|| < 3C,a = 3 and by (1.19) with
5262:%,322€Ewith

1
l2ll < and (= Tafl = ly— To1 = Taf| < Se = 7.

Proceeding inductively, using (I1.19) repeatedly with e = &, = &% L

we obtain a sequence (z, ), such that

1 C
||zn||<2—n and ||y—T(Z1+22+...zn)||<2—n Vn € N.

So x, := 21 + ...z, is Cauchy and hence z,, — = for some x € F.
Clearly

oo oo 1
el < lenll <3 5 =1
n=1 n=

and since T is continuous we have y = T'z. O
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Theorem 6.19 (Closed Graph). Let E,F be Banach spaces and T a linear
operator from E to F. Then

T is continuous <= The graph of T is closed.

Remark 6.20. o Assume that T : E — F. The graph of T is the set
GT):={(z,T(z))lre E}CExF.

o The set G(T) C E x F is closed if for every sequence (x,,), C E for which
Tn, = x and y, :=Tx, — y we have y = Tx.

Proof. ”=*: Clear by continuity of T"!
? <% Consider the two norms on E:

2/l := llzllz + [[Te]lp and [lz]lz2 == [lz]|e.
The norm || - ||; is called the graph norm.
E is a Banach space w.r.t. || - ||2 by assumption and certainly

lz]l2 < ||z]l1 Yz € E.

Let (2y)n C E be Cauchy w.r.t. ||-||2, i-e.,, Ve > 0 3IN : ||zp — 2|2 < € VN, m >
N. Then y,, := Tx, is Cauchy in F and z,, is Cauchy in E. Therefore z = lim z,,
and y = lim T'z,, exist. Since G(T) is closed, it follows that y = T'z. Thus

& = @ally = ¢ = @alls + ly = Taallr =0 asn— oo

so &, converges to z also in || - || norm, i.e., (E,|| - ||1) is complete!
By Corollary 6.18 the two norms are equaivalent, i.e., there exists ¢ > 0 such
that

[zl < ellzlle = cllz]
SO
1Tzl < llzlz+Txlr =zl < clzlle-

O

7 Weak Topologies. Reflexive Spaces. Separa-
ble Spaces. Uniform Convexity

7.1 The coarsest topology for which a collection of maps
becomes continuous

Recall: Given a set X a topology 7 on X is a collection of subsets of X, called
the open sets, such that

1) 0er, Xer,
(2) arbitrary unions of sets in 7 are in T,

(3) finite intersections of sets in 7 are in 7.
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(2) is called 7 is stable under arbitrary unions (or U, pipary), (3) is called 7 is
stable under finite intersections (or (Vg ie)-
A set X with a topology 7 is called topological space.

Suppose X is a set (no structure yet) and (Y;);cs a collection of topological
spaces, and (¢;)ier a collection of maps ¢; : X — ;.

Problem 1: Construct a topology on X that makes all the maps (p;)icr
continuous. Can one find a topology on X which is most economical in the
sense that it contains the fewest open sets?

Note: If X is equipped with the discrete topology, then all subsets of X are
open and hence every map ¢; : X — Y is continuous. But this topology is
huge!

Want: The cheapest topology! It is called the coarsest or weakest topology
associated with (©;)ier,

If w; C Y; is open then cp;l(w,-) is necessarily open in 7 and as w; varies in
the open subsets of Y; and i runs through I, one gets a family of open subsets
which is necessarily open in X! Call this (Uy)xea-

More precisely: (Y;,7;) topological spaces, ¢; : X — Y;,

A= {)\ = (z,wl)\z € I,wi € TZ‘},

Ux = ¢; H(wi).

Catch: (Uy)aeca does not need to be a topology!

= Problem 2: Given a set X and a family (Uy)xca of subsets of X, construct
the cheapest topology 7 on X which contains (Uy)aea.

So 7 must be stable under (g, ;i and U, pigrary and Ux C 7 VA € A.

Step 1: Consider the enlarged family of all finite intersections of sets in
(Ux)xea: NMyer Un, where T' C A is finite. Call this family ®. It is stable
under (g -

Step 2: @ need not be stable under (J,,,p;¢,ar, = consider families I obtained
from ® by taking arbitrary unions of sets in ®. So F is stable under J

arbitrary*
Lemma 7.1. 7 := U, pitrary (finite Ux s stable under (g, Hence 7 is a
topology!
Proof. See any book on point set topology. O

A basis of a neighborhood of a point x € X is a family (U;);c; of open
sets containing x, such that any open set containing x contains an open set from
the basis (i.e., from (U;)er).

Example: In a metric space X, take the open balls centered at x € X.

In our situation: Given z € X, V; a neighborhood of ¢;(x) in Y;

() # ' (V)

finite

yields a basis of neighborhoods of z in X.

In the following, we equip X with the topology 7 which is the weakest
(smallest, coarsest) topology for which all the p; : X — Y; are continuous for
alli € [.
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Proposition 7.2. Let (x,), C X. Then x, = x in 7 (i.e., for any U € 1,2 €
U,z, € U for almost alln) < ¢i(zy) = pi(z) asn — oo Vie 1.

Proof. =: Simple, since by definition ¢; is continuous Vi € I.
«<: Let U be a neighborhood of z. From the discussion above we may assume
U is of the form

U= Vo),

icJ

J C I finite, p;(z) € V; € 7;. Since p;(zn) = pi(x) Vi € I = for i € J3IN; €
N: pi(x,) € V; Vn > N;. Choose N := max;c;(N;) < 0o

= pi(x,) €V, Vie JVn>N

=z, €U VYn>N.

Proposition 7.3. Let Z be a topological space, 1 : Z — X. Then
¥ is continuous <= @; 0 : Z — Y, is continuous Vi € I.

Proof. 7=*: Simple: use that compositions of continuous functions are contin-

uous.
"« Need to show: ¢~ 1(U) is open (in Z) V open set U in X. U has the form

v= U Ne'), View

arbitrary finite

U Nv e m)

arbitrary finite

U ) wicw) ' (V)

arbitrary finite

Y~HU)

open in Z

is open

is open!

so ¢~ 1(U) is open in Z, so 1) is continuous. O

7.2 The weakest topology o(F, E¥)

Let E be a Banach space, E* the dual, so £ has anorm ||- || = |- ||g, f € E*
are continuous linear functionals on E. For f € E* let

E—-TF
Pr
x> pr(x) = f(x)
Take [ = E*)Y; =F, X = E with the usual topology on R, resp. C.

Definition 7.4. The weak topology o(E,E*) on E is the coarsest (smallest)
topology associated with the collection (@) e+ in the sense of Section 7.1.
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Note: Since every map ¢y = f is continuous linear functional the weak
topology is weaker (it contains fewer open sets) than the usual topology on F
induced by the norm on E!

Proposition 7.5. The weak topology o(E, E*) is Hausdorff (i.e., it separates
points).

Proof. Let x1,z9 € E,x1 # x3. We need to construct open sets 01,05 €
O'(E7E*) with 1 € 01,25 € 05,0, N Oy = 0.

By Hahn-Banach (2nd geometric form) we can strictly separate {z1}, {z2} by
some f € EF* ie, dJa e R

Ref(z1) < a < Ref(x2).

Set
01 := {z € E|Ref(z) < a} = ¢ ((—00,@) +iR) € o(E, E¥)
Og:={z € E|Ref(x) > a} = gp}l((a,—koo) +iR) € o(E, E").

Clearly 21 € 01,22 € 02,0; N Oy = (. O

Proposition 7.6. Let zo € E. Given € > 0 and finitely many f1,..., fr € B,
and let

V=V(fi, ... fr,e) ={z € E| |filx —x0)| <e&,Vi=1,... k}.

Then V is a neighborhood of g in o(E, E*) and we get a basis of neighborhoods
of xg in o(E, E*) by varying e > 0,k € N, and fi1,... fr € E*.
Proof.

k
xg eV = ﬂ @ﬁl({z €C||z—a;] <e}) €o(E,EY), «;:= fi(xg), is open!
i=1

Conversely, let g € U € o(E, E*). By definition of o(E, E*), U contains an
open set W 3 zq of the form

W= ¥ (V)

finite
V; neighborhood of f;(xg) = «; in F.
=3e>0: {ze€C|lz—w|<e}CV; Vi=1,...k
soxgeVCWcU. O

Notation: If (x,), C X converges to = in the weak topology o(E, E*), we
write z,, = z (or x,, = x in o(E, E*), or ,, — x weakly in o(E, E*), or x,, = &
weakly). We say that x,, — x strongly if ||z, — || — 0 (usual convergence in
Proposition 7.7. Let (x,), C E be a sequence. Then

(a) xp = x weakly <= f(x,) = f(z) Vf € E*.
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(b) If z,, — x strongly then x,, — x weakly.

(¢) If x,, = x weakly, then (||z,]|)n is bounded in R and ||z|| < liminf, . ||Tn]-

(d) If x,, — x weakly and f, — f strongly in E* (i.e., ||fn — fllgx — 0) then

fn(@n) = f(z).
Proof. (a) Follows from the definition of o(E, E*) and Proposition 7.2.

(b) By (a)

[f(@n) = f(@)] = [f(zn —2)| < |1 f]

E* xn—x||E—>0.

(¢) Note that Vf € E*,(f(xn))n C F is bounded. Therefore, by the uniform
boundedness principle

00 > sup sup |f(@n)| = sup [|2n] &
nEN fEB* || f|| g <1 neN

=lznlle

Tolle < lzalle i [f]

pe < 1.

[f(@)] = |f(@n)] < | f]

E*

= |f(@)| <liminf |aalls VS € B, | ]

e <1

= |lz|p = sup |f(2)] < liminf |z, [ 5.
feE= || fllp=<1 n—reo

(d) Note that by (a) and (c)

[fn(n) = F@)| < |fu(en) = flzn)| + [f(2n) = f(2)]

<o = Fll=llznll + 1f(2n —2)] = 0 asn — oo
O

Proposition 7.8. If E is finite-dimensional then o(E, E*) and the usual topol-
ogy are the same, so a sequence (Z,)n converges weakly < (z), converges
strongly.

Proof. Since o(E, E*) contains fewer open sets than the strong topology it is
enough to show that every (strongly) open set is weakly open.

Let g € E and U strongly open with g € U. Need to find f1,..., fr € E*, e >
0 with

V=V(fi,..., frve) ={x € BE| |fi(x —xp)| <eforalli=1,...,k} C U.

Let » > 0 such that B,.(z¢g) C U. Pick a basis ej,es,...,¢e, in E such that
lles]| =1 for all i = 1,... k. Note that

k
T = ijej and z— z; = f;(z)

j=1
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are continuous linear functionals on E. Also

k
lz = ol = (1Y f(z — zo)es|

j=1
k
< fix = xo)lllej]
j=1
k
=Y Ifilw=m)| <k-c VzeV.
j=1
Choose r = 7 to get V. C U. O

Remark 7.9. Weakly open (resp. closed) sets are always open (resp. closed)
in the strong topology! If E is infinite-dimensional, the weak topology o(E, E*)
is strictly coarser (smaller) than the strong topology.

Example. Let E be infinite-dimensional. The unit sphere

—o(E,E™)

S={zekEl|z|=1} = S =Bp={z € E||z| < 1}!

Proof. Step 1: {z € E| ||z|| <1} C 5IEED,
Indeed, let 2o € V C o(E, E*). Need to show that V' N .S # 0.
By Proposition 7.6, we may assume

V={zecE||filz—z)|<e Vi=1,...,k}

for some € > 0, f1,..., fr € E*.
Claim: Jyo € E\ {0} with fi(yo) =0Vi=1,...,k.
If not, the map

. {E—HF’f
v x = (x) = (fi(x), fa(x),..., fr(x))

is injective (why?) and hence ¢ would be injective and surjective from E onto
¢(E) C F*. Since p(E) C F* is a Banach space, the inverse mapping theorem
would give that ¢ and ¢! are continuous so E is homeomorphic to a finite-
dimensional space, hence F would be finite-dimensional. So the claim is true.
Note that xg + tyo € V for all t € R. Since g(t) := ||zo + tyol| is continuous on
[0,00), g(0) = ||@o|| < 1,lim;—e0 g(t) = o0, there exists to > 0 : ||zg + tyol| =
1= xg+toyo C SNV. By Step 1 we see

—o(E,E*)

SCBgCS (%)

Step 2: Bg is closed in the weak topology.
Indeed,

Bg = ﬂ {r € E||f(z)| <1} is weakly closed.
feE~|Ifle~<1

weakly closed

By (%) and Step 2: B = FU(E’E*) since ?U(E’E*) is the smallest weakly closed

set containing Br and Bg is weakly closed. O
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Example. The unit ball U = {zx € E| ||z|| < 1}, E infinite-dimensional, is not
weakly open.

Indeed, if U were weakly open then U¢ = {x € E| ||x|| > 1} is weakly closed and
hence

S =BgnNU°

1s weakly closed which by the previous Example it is not!

7.3 Weak topology and convex sets

Recall that every weakly closed set is strongly closed, but the converse is false
if E is infinite-dimensional.
But: convex + strongly closed = weakly closed.

Theorem 7.10. Let C' C E be convex. Then C is closed if and only if C is
weakly closed.

Proof. ”<«<*“: Clear since C* is weakly open, hence open.

"= Need to check that C°¢ is weakly open. Let xg ¢ C. By Hahn-Banach,
there exists a closed hyperplane which strictly separates {zo} and C, i.e., there
exists f € E*, a € R such that

Ref(xo) < o< Ref(y) VyeC.
Set
V:={x € E|Ref(z) < a} € o(E,E").
Then 2o € V,VNC =0 so V C C°. 0

Remark 7.11. The above proof shows that C = (| H. where the intersection is
over all closed half-spaces Ho which contain C.

Corollary 7.12 (Mazur). Assume that x, — x weakly. Then there exists a
sequence (Yn)n of convex combinations of x,, which converges strongly to x.

Proof. Let C' := conv(|J;=,{z:1}) be the convex hull of z,,. Since  belongs to
the weak closure of (J;Z,{z}, it also belongs to the weak closure of C! By
Theorem 7.10 we get x € C, the strong closure of C'! O

Corollary 7.13. Assume ¢ : E — (—o00,+00] is conver and lower semi-
continuous (1.s.c) in the strong topology. Then ¢ is l.s.c. in the weak topology.

Proof. ¢ is (strongly) ls.c. if for every sequence (z,), C F,z, — = one has
liminf () > ()
n—oo

and similarly for weakly l.s.c. (replace z,, — = by z,, — x).
In terms of the level sets:

Lemma. ¢ : E — (—o0,+00] is strongly (resp. weakly) l.s.c. if for all A € R
the sets

Ay :={z € Elp(z) < A}

are strongly (resp. weakly) closed.
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Proof. If ¢ is strongly l.s.c and z,, € Ay with z,, — x, then

o(z) < liminf p(z,) < A
——

n—oo
<A

sox € Ay, i.e., Ay is closed.
For the converse, assume that ¢ is not L.s.c. at some point x but A is closed
VA € R. So there exists a sequence (z,,), C E,z, — x and

liminf @(z,) < p(z).

n— oo

Thus there exists a subsequence, also called (z,),, and A € R such that
o(Tn) <A< @(x) ¥YneN.

But then z,, € Ay Vn € N and since x,, — x and A, is closed, also x € A,, i.e.,
o(z) < A, a contradiction.

For the statement with strongly replaced by weakly, just replace z,, — x by
T, — x in the proof. O

Continuing the proof of the Corollary, we have
Ax = {z € Elp(z) < A}

is closed, since ¢ is strongly l.s.c. Since ¢ is convex, we also have that Ay is
convex (why?)! So A, is convex and strongly closed and by Theorem 7.10 it is
weakly closed! O

Example. p(z) = ||z|| is convex and strongly continuous so it is weakly l.s.c.
Hence if x,, — x weakly, then ||z|| < liminf,, o ||z,]| (compare with Proposition

7.7).

Theorem 7.14. Let E, B be Banach spaces and T : E — B linear. Then T is
continuous in the strong topologies on E and B if and only if T is continuous
in the weak topologies on E and B.

Proof. ”=*: By Proposition 7.3, we need to show that for any f € B* the
composition foT, i.e., the map x — f(Tz) is continuous from (F,c(E, E*)) to
F.

Since z — f(Tx) € E* it is automatically also continuous w.r.t. o(E,E*)!
7<= “ Assume T : (E,o(E,E*)) = (B,o(B, B*)) is continuous. Then

G(T)={(z,Tx)lr € E} CE x B

is closed in E x B equipped with the product topology o(FE, E*) x o(B, B*) =
o(E x B,(E x B)*). So G(T) is weakly closed, but then also strongly closed in
E x B. By the Closed graph theorem it follows that T': ' — B is continuous
in the strong topology. O
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7.4 The weakx topology o(E*, E)

Consider the dual space E* of a normed vector space E. So far, we have two
topologies on E*:

(a) The usual (strong) topology associated to the norm on E*, |f||g- :=

SUP|p <1 1f(@)]-

(b) The weak topology o(E*, E**), where E** = (E*)* is the dual of E*, from
the last sections.

Note that we can always consider E as a subset of E** = { continuous linear
functionals on E*} by the following device: Given z € E let px : E* — F be
defined by

oz (f) = f(2).

Then ¢, € E** corresponds to € E and x — ¢, is injective since if ¢, = g,
then for all f € E* one has

f(@1) = @y = @u, = f(22)

and since E* separates the points in E this means 1 = x5! So the map z — ¢,
yields an injection of E into E**.

Definition 7.15. The weakx topology o(E*, E) is the smallest topology on E*
associated with the family (¢ )zer, i-e., it is the smallest topology on E* which
makes all the maps o, : E* — F,x € E, continuous.

Remark 7.16. o Since E C E** it is clear that o(E*, E) contains fewer
open sets than the weak topology o(E*, E**) which in turn has fewer open
sets that the strong topology on E*.

e The reason why one wants to study these different notions of weak topolo-
gies is that the fewer open sets a topology has, the more sets are compact!
Since compact sets are fundamentally important — e.g., in the proof of
existence of minimizers — it is easy to understand the importance of the
weakx topology.

Proposition 7.17. The weakx topology is Hausdorff.

Proof. Given fi, fo € E* with f; # fa, there exists € E such that fi(z) #
f2(x) (this DOES NOT use Hahn-Banach, but just the fact that fi # fa!).
W.l.o.g., we can assume that Re fi(z) # Re fo(x). If not, then Im fi(x) #
Im f3(z) and hence

Re(—if1(x)) = Im fi(x) # Im fa(x) = Re(—ifa(x))

so consider —i f1, —ifo instead of f; and f5.
W.lo.g., Re fi(z) < Re fa(x) and choose a« € R : Re fi(x) < o < Re fa(z).
Set

O1:= {f € E"|Ref(z) < a} = ;' ([-00,a) +iR)
O := {f € E*|Ref(x) > a} = ¢, *((a, 00) + iR)

Then Ol,OQEJ(E*,E),fl 601,f2602 and 01002:(2). O
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Proposition 7.18. Let fo € E*,n € N, {z1,22,...,2,} C E and e > 0. Con-
sider

V=V(z1,...,zn,e) :={f € E*||(f — fo)(zj)| <e forall j=1,...,n}.

Then V is a neighborhood of fo in o(E*,E). Moreover, we obtain a basis of
neighborhoods of fo in o(E, E*) by varying e > 0,n € N, and z1,...,2, € E.

Proof. A literal transcription of the proof of Proposition 7.6. O

Notation: If a sequence (f,), C E* converges to f in the weakx topology,
we write f, — f.

To avoid confusion, we sometimes emphasize ” f,, — f in o(E*, E)*,” f, — f
in o(E*, E**)“ and 7 f,, — f strongly*“.

Proposition 7.19. Let (f,), C E. Then

(a) fo > fin o(E*,E) <= fu(zx) = f(z),Vz € E (i.e., convergence of
functionals in o(E*, E) is the same as pointwise convergence of f, to f!).

(b) If f.. — f strongly, then f, — f in o(E*, E**).
If fo — f in o(E*, E**), then f, = f in o(E*,E).

(c) If fn X fin o(E*, E), then (|| fnll)n is bounded and | f|| < liminf || fy||.
(d) If fn X fin o(E*, E) and if x, — x strongly in E, then f,(z) — f(x).
Proof. Copy the proof of Proposition 7.7. O

Remark 7.20. When E is finite-dimensional, then the three topologies (strong,
weak, weakx) on E* coincide! Indeed, then the canonical injection J : E — E**
given by  — i, 0 (f) = f(z), f € E* is surjective (since dimE = dimE**)
and therefore o(E*, E) = o(E*, E**).

The main result about compactness in the weak+ topology is the famous

Theorem 7.21 (Banach-Alaoglu-Bourbaki). The closed unit ball
Bp-:={f € E"[ || flle- <1}

is compact in the weakx topology o(E*, E).

Note: This compactness property is the most essential property of the weaks
topology!

Proof. We will reformulate the problem slightly: Consider the cartesian product
Y :=FF = {maps w: E = F} = (w(z))sep with w(z) € F.

We equip Y with the standard product topology, i.e., the smallest topology on
Y such that the collection of maps

FE=Yowrwkx)eFrecFE

is continuous for all x € E. This is the same as the topology of pointwise
convergence, i.e., (wp), C Y converges to w if Vo € E,wy(z) — w(z) (see
Munkres: Topology, A First Course, Prentice Hall, 1975 or Dixmier: General
Topology, Springer 1984, or Knapp: Basic Real Analysis, Birkhduser, 2005).
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A very useful fact on product topology:

Theorem (Tychonov’s theorem). An arbitrary product of compact spaces is
compact in the product topology.

Proof. See the above books. O

Note: E* consists of very special maps from E to F, namely the continuous
linear maps. So we may consider E* as a subset of Y'!
More precisely, let

d:E* =Y
be the canonical injection from E* to Y given by

(f) == (®(f)e)zer = (f(z))eecr-

Clearly, ® is continuous from E* into Y. To see this, simply use Proposition
7.3 and note that for each fixed z € F, the map

E*3 [ (2(f))e = f(2)
is continuous!
Since the inverse ®~! : ®(E*) — E* is given by
wi (E3x— &Y w)(z) = w)),

one sees that =1 : Y D ®(E*) — E* is also continuous when Y is given the
product topology. Indeed, using Proposition 7.3 again, it is enough to check,
for each fixed x € E, that the map w — ®71(w)(z) := w(x)) is continuous on
®(E*) C Y. But this is obvious, since Y is given the product topology, so if
wp, — w in Y then wy(z) — w(z) for all z € E, so

O Hwy)(x) = wp(r) = w(x) = ¢ H(w)(z) asn — oco.

Upshot: @ is a homeomorhism from E* onto ®(E*) C Y where E* is given
the weak* topology o(E*, E) and Y is given the product topology.
Note: ®(Bg+) = K, where the set K C Y is given by

K ={w e Y| |w(x)| <|z|g,w is linear, i.e.,
w(r +y) = w(z) +w(y) and
w(Az) = dw(z) VA € F,z,y € E}.

Now we only have to check that K is a compact subset of Y!
We can write K = K1 N K5 where

K ={weY||lw)| <|z|g Vx € E}
and

Ky :=®(E*) = {w € Y|w is linear}.
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Note that K7 can be written as

Ky = []I=ll=ll, llz]] c R ifF=R
zeFE

or

Ki=[[{zeC|lz| <z} cC” ifF=C
zeFE

and by Tychonov’s theorem K is a compact subset of Y'!

So we only have to show that K is closed (since the intersection of a closed
set and a compact set is compact!).
Let

By = {w € Y|w(hiz + Aay) — Mw(x) — Aaw(y) = 0}

which are closed subsets of Y, since if w,, € By y a2, then, if w, = winY,
then

0 =wn (A1 + Aoy) — Mwn () — Agwn(y)
= whz 4+ Ay) — Mw(z) — Maw(y) asn — oo

80 W € By y i xo-
So

Ky = N Bayaine
z,y€E, A1, 2€F

is closed in Y'!

Hence K = K; N Ky is compact and so Bg« = ®~!(K) is compact in E*
wrt o(E* E). O
7.5 Reflexive spaces

Definition 7.22. Let E be a Banach space and J : E — E** the canonical
injection from E into E** given by

(J(@))(f) == @a(f) = f(z) Ve ek, fekE".
The space E is reflexive if J is surjective, i.e., J(FE) = E**.
Note: When F is reflexive, E** is usually identified with E!

Remark 7.23. (a) Finite-dimensional spaces are reflexive (since dimE = dimE* =
dimE™).
Later we will see that LP and IP are reflexive if 1 < p < oo.

(b) Every Hilbert space is reflexive.
(c) LY, L*>,I* and ® are not reflexive.

C(K) = space of continuous functions on an infinite compact metric space K

s not reflexive.
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(d) It is essential to use the canonical injection J in the definition of reflexive
spaces. See R.C. James: A non-reflexive Banach space isometric with its
second conjugate, Proc. Nat. Acad. Sci USA 87 (1951), pp 174-177, for a
non-reflerive Banach space for which E is isometric to E**.

Theorem 7.24 (Kakutani). Let E be a Banach space. Then E is reflexive if
and only if Bg = {z € E| ||z|| < 1} is compact in the weak topology o(E, E*).

Proof. 7=“: Here J(B) = Bpg+ by assumption. By Theorem 7.21 we know
that Bp«+ is compact in the weakx topology o(E**, E*). So it is enough to
check that J~! : E** — E is continuous when E** is equipped with the weaks
topology o(E**, E*) and F is equipped with the weak topology o(F, E*).

But a map J~!: E** — E is continuous when FE is given the weak topology if
and only if Vf € E* the map & — f(J~1(£)) is continuous.

Note that f(J71(€)) = &(f), € € E** but for fixed f the map E** 5 & — £(f) is
continuous on E** with the weak* topology o(E**, E*)! So J~! is continuous
and B = J~1(Bpg«+) is compact.

7<:“ We need the following two lemmata

Lemma 7.25. Let E be a Banach space, f1,...fr € E* and y1,...,7 € F.
Then

(a) Ve 3z, € E with ||ze|| <1 and |fi(z:) — v <eVi=1,...,k

18 equivalent to

k k
(b) Il;ﬂml < ||l;ﬁzfz|\ VBi,..., 0k €F.

Proof. Only for F = C.
k

7(a) = (b)“ Fix f1,...,0r € C, S:= 3" |5 By (a) we have
I=1

k k
1> Bifilee) = > Bru| < &S
=1

=1

and hence

k k

13" Brul < 1Y Bufilwa)] + €S
=1 =1
k

<> Bifil

=1

gl|lzel|lg +eS Ve >0.

7(b) = (a)“: We will show that not (b) = not (a):
Let v = (v1,...,7) € C* and let ¢ : E — C* be given by

o(x) == (fi(2), fo(@), ..., fu(@)).

Then (a) can be rephrased as follows

v € ¢(Bg) (closure in C*)
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and not (a) means v ¢ ¢(Bg), i.e., {7} and ¢(Bg) can be striclty separated in
C* by a hyperplane, i.e., there exist 3 = (8,...,8:) € C¥ = (C*)* and a € R
such that for all z € Bg

Re(B(p(x))) = Re(B - p(x ReZBzﬁ

<a<Re(B-7) ReZﬂm

Therefore (take sup over ||z| < 1)

k k k
I Bfll<a<Red B <] Bl
=1 =1 =1

i.e., not (b) is true! O

Lemma 7.26. Let E be a Banach space. Then J(Bg) is dense in Bg« w.r.t.
the weakx topology o(E**, E*) on E**. Consequently, J(F) is dense in E**
w.r.t. the weakx topology o(E**, E*) on E**.

Proof. Let £ € Bg=« and V be a neighborhood of £ in o(E**, E*). Need to show
VN J(Bg) # 0. As usual, we may assume that V is of the form

V={necE7 -l <e Vi=1,... .k}

for some fy,... fr € E*,e > 0.
We have to find « € Bg with J(z) € V, ie.,

Ifi(z) —&E(f)| <e VIi=1,...k.
Set v; := &(f1). By Lemma 7.25 we need to check

K k
> Bl < 1D 8l
=1 =1

but this is clear since

k
> Bim= Zﬁlf fi) = Zﬁlfz e E™)
=1

SO

|

E* Ex* .

k k k
1> Bl =160 Buf) < 1D Bifil
=1 =1 =1

O

Remark 7.27. J(Bg) is always closed in Bg= in the strong topology on E**!
Indeed, if &, = J(x,) — & then, since J is an isometry, x, must be Cauchy in
Bg, so x, — x and £ = J(x). Thus J(Bg) is not dense in Bg«~ in the strong
topology unless J(Bg) = Bg««, i.e., E is reflexive!
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Continuing the proof of Theorem 7.24 7<=
The canonical injection J : E — E** is always continuous from o(E, E*) into
o(E**, E*) since for fixed f € E*,x — (Jz)(f) = f(Jx) is continuous w.r.t.
o(E, E*). Assuming that By is weakly compact (i.e., in o(E, E*) topology) we
see that J(Bg) is compact and thus closed in E** w.r.t. o(E**, E*).
But by Lemma 7.26, J(Bg) is dense in Bg+« for the same topology! Therefore
J(Bg) = Bp«~, hence J(E) = E**, i.e., E is reflexive. O

Theorem 7.28. Assume that E is a reflexive Banach space and (x,,), C E a
bounded sequence. Then there exists a subsequence (xy,) that converges weakly.

Remark 7.29. A result of Eberlein-Smulian says that if E is a Banach space
such that every bounded sequence has a weakly convergent subsequence then E
is reflexive! (See Holmes: Geometric Functional Analysis and its Applications,
Springer, 1975).

Proposition 7.30. Let E be a reflexive Banach space and M C E a closed
linear subspace of E. Then M is reflexive.

Proof. M, equipped with the norm from F has a-priori two distinct weak topolo-
gies:

(a) the topology induced by o(E, E*)
(b) its own weak topology o (M, M™*).

Fact: these two topologies are the same since by Hahn-Banach, every continuous
linear functional on M is the restriction of a continuous linear functional on E!

By Theorem 7.24 we need to check that Bj; is compact in the weak topology
o(M, M*), or equaivalently, in the topology o(E, E*)! We know that Bp is
compact in the weak topology and since M is (strongly) closed and convex it is
also weakly closed by Theorem 7.10. So Bj; = M N Bg is weakly compact! [

Corollary 7.31. A Banach space E is reflexive if and only if E* is reflezive.

Proof. ”="*: Roughly: E** = E = E*** = E*.
More precisely, let J : E — E** be the canonical isometry. Let ¢ € E***. The
map

z = fola) = p(J(2))

is a continuous linear functional on F, so f € E*.
Note:

p(J(2)) = f(z) = (J(2))(f) VzeE J(x)eE™. (%)

By assumption J : E — E** is surjective so for every { € E** 3z € E, £ = J(x).
So (x) yields

p(&) =&(f) VEe B,

i.e., the canonical injection E* — E*** is surjective.

"« Let E* be reflexive. By "= above we know that E** is reflexive. Since
J(E) C E** is a closed subspace in the strong topology, Theorem 7.30 yields
that J(E) is reflexive. Thus FE is reflexive! O
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Corollary 7.32. Let E be a reflexive Banach space, K C E a bounded, closed
and convex subset. Then K is compact in the weak topology o(E, E*).

Proof. By Theorem 7.10 K is closed in the weak topology. Since K is bounded
there exists m € N with K C mBg and mBpg is weakly compact by Theorem
7.24. So K is a weakly closed subset of a weakly compact set and thus K is
weakly compact. O

Corollary 7.33. Let E be a reflexive Banach space and let A C E be non-empty,
closed and convex. Let ¢ : A — (—00,00] be a convex lower semi-continuous
(Ls.c.) function such that ¢ # +oo and

i () =00 (no assumption if A is bounded). ()
z€A,||z]| =00

Then ¢ achieves its minimum on A, i.e., there exists some xo € A such that

plzo) = inf p().

Proof. Fix any a € A such that ¢(a) < oo and define
A= o € Alp(a) < pla)}.

Then A is closed, convex and bounded (by (*x)) and thus compact in the weak
topology o(E, E*) by Corollary 7.32! By Corollary 7.13, ¢ is also l.s.c. in the
weak topology o(F, E*) (since ¢ is convex and strongly 1.s.c).

Let (2,), C A be a minimizing sequence in A (ie., z, € A, o(x,) —
inf__z¢(x)). Since A is weakly compact, (x,), has a weakly convergent sub-
sequence, i.e.

ro := weak — lim z,,, exists
Jj—o0 7

for some subsequence (z,,); of (). Since A is weakly closed it follows that
zo € A and by the weak Ls.c. property of ¢ we get

inf ¢(x) < p(zo) < liminf p(z,,) = inf p(z)
zeA l—=o0 zeA

so ¢(zo) :}nfzeg o(x).
If z € A\ A, then

(o) < pla) < p(z),
thus p(z9) < p(x) Va € A. O

Remark 7.34. Corollary 7.33 is the main reason why reflerive spaces and
convex functions are so important in many problems in the calculus of variations.

7.6 Separable spaces

Definition 7.35. A metric space E is separable if there exists a countable dense
subset D C E.
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Note: Many important spaces are separable. Finite-dimensional spaces are
separable, also LP and IP,1 < p < oo are separable. C(K), K compact, is
separable, but L>° and [°° are not separable.

Proposition 7.36. Let E be a separable metric space and F' C E any subset.
Then F' is separable.

Proof. Let (u,), C E be a countable dense subset of E and r,, > 0,7, — o0
as m — oo. Choose any point a, , € By, (un) N F whenever this is non-empty.
Then (Gm,n)m.n is countable and dense in F. O

Theorem 7.37. Let E be a Banach space such that E* is separable. Then E
18 separable.

Remark 7.38. The converse is not true! E.g., E = L' is separable, but E* =
L s not.

Proof. Let (fn)nen be countable and dense in E*. Since ||fn| = [|fnllex =
SUPgep, |of p=1 |fn(¥)], there is some z,, € E such that

1
lznll =1 and |[fo(2n)] > 5”an (*)

Let L be the vector space over F generated by the (x,,)nen (i-e., the set of finite
linear combinations of the ).

Claim 1: L is dense in E.

Indeed, according to Remark 5.28 we have to check that any f € E* which

vanishes on L must be identically zero.
Given € > 0 3N € N such that || f — fn|| <e. Then

A< I = Inll+ Il

Note that since f(zy) =0 (f vanishes on L) and (%) we have

%”fNH <\fnG@ml = I0f =)@ < I1f = fnllllew = 1f = fll-
So

A< F = Il +20f = Fall < 3e

and since this holds for all € > 0, || f|]| =0, i.e., f =0.

If F =R, let Ly be the vector space over Q generated by the (z,,),. If F =C
let Lo be the vector space over Q + iQ generated by the (z,),. Le., the set of
all finite linear combinations with coefficients in Q, resp. in Q + Q.

Then Ly is dense in L and hence dense in E (since L is dense in E by Claim
1).

Claim 2: Lg is countable!
Indeed, for n € N let A,, be the vector space over Q, resp. over Q+iQ, generated
by (zx)1<k<n- An is countable and

Lo=|J A
neN

is countable, as a countable union of countable sets. O]



66 CHAPTER I. NVS, BS AND MS

Corollary 7.39. Let E be a Banach space. Then E is reflexive and separable
if and only if E* is reflexive and separable.

Proof. We already know by Theorem 7.37 and Corollary 7.31 that
E*reflexive and separable = Ereflexive and separable.

Conversely, if E is reflexive and separable, then E** = J(FE) is reflexive and
separable. Since E** = (E*)*, the =" direction applied to E* yields E reflexive
and separable. O

There is also a connection between separability and metrizability of the weak
topologies.

Theorem 7.40. Let E be a separable Banach space. Then Bg~ is metrizable
in the weakx topology o(E*, E). Conversely, if Bg+ is metrizable in o(E*, E),
then E* is separable.

There is a dual statement.

Theorem 7.41. Let E be a Banach space such that E* is separable. Then Bg
is metrizable in the weak topology o(E, E*). Conversely, if Bg is metrizable in
o(E, E*), then E* is separable.

Proof of Theorem 7.40. Let (x,), C Bg be a dense countable subset of Bg.
For f € E* set

7= 3 glfn)l

Then [-] is a norm on E* and [f] < || fllg~ (Why?). Put d(f,g) := [f — g]. We
have to show that the topology induced bu d on Bg- is the same as the weaksx
topology o(E*, E) restricted to Bg.

Step 1: Let fo € B« and V a neighborhood of fy in o(E*, E). Have to find
some 7 > 0 such that

UT:{fEBE*

d(.f7f0) <7ﬁ} cv

As before, we can assume that V' is of the form

(f = fo)w) <e, Vi=1,...,k}
for some € > 0,y1,...,yx € E.

W.log., |yl <1,i=1,...,k.
Since (z,), is dense in Bg, we know that Vi = 1,...,k,3n; € N such that

Choose r > 0 small enough such that

2""7"<§, i=1,... k.
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Claim: U, C V!

Indeed, if

P> d(f, fo) = 3 5l = Fo)a)

n=1

then

Sl = fo)en)l <y Wi=1, Lk
Hence, for i =1,...,k

\(f = fo)(wa)l = |(f = fo)(yi — @n,) + (f — fo)(@n,)
< If = foll llyi = an [+ |(f = fo)(@n,)| <€
—_———
<2 <% <3

so feV.

Step 2: Let fy € Bg+«. Given r > 0, we have to find some neighborhood V in
o(E*, E) such that

VcU={f¢€ Bg-

d(f?fO) < 71}'

We choose V' to be of the form

V={f € Bg||(f— fo)lzy)| <e} Vi=1,...,k

with € and k to be determined so that V C U.
If f € V, then

A, Jo) = 3 5 (7 — o))

n=1
k 00
=Y S = @)+ D S 1 = fo))l
n=1 <e n=k+1 <2
<e+2 Z o a+2k1_1
n=k+1

T

so it is enough to take ¢ = 5 and k € N such that Qk%l <3

Conversely, suppose that Bg« is metrizable in o(E*, E) and let us prove that
FE is separable.
Set

Un = (] € Bp-| d(1,0) < 1}

and let V,, be a neighborhood of 0 in ¢(E*, E) such that V,, C U,. Again, we
may assume that V,, has the form

V., = {f € Bg-

f@)| <e, Va e ®,}
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with &, > 0 and ®,, some finite subset of E. Set
D:=J o,
neN

so that D is countable.
Claim: The vector space generated by D is dense in F (this implies E is sepa-

rable!).
Suppose f € E* is such that f(z) = 0Vz € D. Then f € V,, C U, Vn € N.
Thus f =0 (i.e., span(D) is dense in E). O

“Proof of Theorem 7.417: The implication
E* separable = Bp is metrizable in o(E, E*)

is exactly as above.
The proof of the converse is trickier (where does the above argument break
down?). See Dunford-Schwartz: Linear Operators, Interscience, 1972. O

Corollary 7.42. Let E be a Banach space and (f,)n a bounded sequence in
E*. Then there exists a subsequence (fn,)1 that converges in the weakx topology
o(E*,E).

Proof. W.lo.g. ||fnll <1Vn € N. The set Bg~ is compact (by Banach-Alaoglu)
and metrizable (by Theorem 7.40) in the weakx topology o(E*, E). So every
sequence in Bg+ has a convergent subsequence! O

Proof of Theorem 7.28. Let My = span(x,,n € N) and M = My. Clearly M
is separable and M C FE is also reflexive (by Theorem 7.30). Thus Bj; = unit
ball in M is compact and metrizable in the weak topology o(M, M™*), since
M* is separable (see Corollary 7.39 and Theorem 7.40). Hence there exists a
subsequence (zy,); which converges weakly w.r.t. o(M, M*) and hence (zy,);
converges weakly w.r.t. o(E, E*) also (see Proof of Theorem 7.30). O

7.7 Uniformly convex spaces

Definition 7.43. A Banach space E is uniformly convex if Ve > 036 > 0

such that

r+y
2

ry€E ol S LIl <1, and lo -yl > = ||| <1-4

This is a geometric property of the unit ball. If one slides a ruler of length
€ > 0 in the unit ball, then its midpoint must stay within a ball of radius 1 — §
for some 0 > 0, i.e., it measures how round the unit sphere is.

Example. (1) E = R?|jzlls = (22 + 23)2 is uniformly conver. Here the
curvature of the unit sphere is positive.
But

x|y = |z1] + |z2] (Manhattan norm)

[2]loo = max(|z1], |2])

are not uniformly convex. They both have a flat surface!
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(2) LP spaces are uniformly convexr for 1 < p < oo. Any Hilbert space is
uniformly convex.

Theorem 7.44. [Milman-Pettis) Every uniformly convexr Banach space is re-
flexive.

Note:

e Uniform convexity is a geometric property of the norm, an equivalent
norm need not be uniformly convex.
Reflexivity is a topological property: a reflexive space remains reflexive
for an equivalent norm.
Thus Theorem 7.44 is somewhat surprising: a geometric property implies
a topological property.

e Uniform convexity is often used to prove reflexivity, but this is only suf-
ficient. There are (weird) reflexive Banach spaces that do not have any
uniformly convex equaivalent norm!

Proof. Assume F is a real Banach space. Let £ € E**,||¢||=1and J : E — E**
be the canonical injection given by

J(@)(f) = f(x) VfeE* zekE.
Have to show: ¢ € J(Bg).
Since J is an isometry, J(Bg) C E** is closed in the strong topology on E**.
So it is enough to show

Ve > 0 3z € Bg such that ||€ — J(z)]| < e. (%)

Fix e > 0 and let § = 0. > 0 be the modulus of uniform convexity. Choose some
f € E* with || f|| =1 and

&f)>1- g (if E is real, otherwise work with Re£(f)).

This is possible since ||£]| = 1.
Set

s’k d

Vi={ne E7 =&l <5
so £ €V € (B, E").
Since J(Bg) is dense in Bp-- w.r.t. weaks topology o(E**, E*) thanks to
Lemma 7.26 we have VNJ(Bg) # 0. Thus there is z € Bg such that J(z) € V!
Claim: z satisfies (x).
If not, then ||§¢ — J(z)|| > ¢, i.e.
&€ (J(x)+eBg):=W € o(E*™,E*) (since Bg«~ is closed in o(E**, E*)).
Then, again by Lemma 7.26, it follows V N W N J(Bg) # 0, i.e.

Jy € Bg such that J(y) e VNW C V.
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Note: Since J(y) € W, we have ||J(z) — J(y)|| > €, and since J is isometric, we
must have

e —yll > &. (%)

Since J(x), J(y) € V we have the inequalities

€

g > [(J(x) =) = |f (=) = (N = &(f) — fl=)
0

3>

=2(f) < flx+y)+26 < |z +y||+9

or
T+y H ) )
—=—>1-=-=-=-=1-4.
H 2 > &) 2 = 2 2
But by uniform convexity, this means
lz—yll <e
contradicting (sx). O

Proposition 7.45. Let E be a uniformly conver Banach space and (), C E
with 2, = x weakly in o(E, E*) and

lim sup ||z, || < ||z]|. (1.20)
Then x, — x strongly.

Remark. We always have x,, — z = ||| < liminf ||z,| (by Proposition 7.7),
so (1.20) says that the sequence ||z,| does not loose “mass” as n — oo.

Proof. Assume x # 0 (otherwise trivial).
Idea: renormalize!
Set

1 T
An = max(([zall 2ll), - yn = =an, yi= s so flyall < 1yl = 1.
n [zl

Note: y,, — y strongly implies z,, — « strongly (check this!).
Further note A,, — A and hence (since x,, — x weakly), v, — y weakly (check
this!). Thus

Ynty y
2
and by Proposition 7.7

1=yl = H#H < lim inf )

yn+y’)
2

<sUlynl+ilylN <1

Yn + Y

:>‘TH—>1 as n — oo.

By the uniform convexity we get

lyn —yll =0 asn — oo,

i.e., Yy, — y strongly. O



8. LY SPACES 71

8 LP? spaces
Some notation: (£2,.A, ) measure space, i.e.,  is a set and

(i) A is a o-algebra in Q: a collection of subsets of £ (so A C P(£2)) such that

(a) De A
(b AcA=A°c A
(c) UrZ, A, € A whenever A, € AVn €N

(ii) p is a measure, i.e., p: A — [0, 00] with
(a) u(0) =0
(b) p(UnZy An) =

18

w(Ay) whenever (A4,), C A are disjoint

n=1

We will also assume that

(iii) € is o-finite, i.e., there exist Q, € A,n € N which exhaust Q, i.e.,
Unen n = Q, and p(€2,) < oo Vn € N.

The sets N € A such that u(N) = 0 are called null sets.

A property holds almost everywhere (a.e.) or for almost all z € €, if it holds
everywhere on '\ N, where N is a null set.

See Bauer: Measure theory, 4th edition, and the handout for details on
measurable functions f: Q — R (or Q — C).

We denote by L(Q, u1) (or simply L(9), or just L') the space of integrable
function from Q to R/C.

We often write [ f = [ fdu= [ fdu,
Q

1l = 1l =/|f|du=/|f\-
Q

As usual, we identify functions which coincide a.e.!

8.1 Some results from integration everyone must know

Theorem (Monotone convergence, Beppo-Levi). Let (f,)n be a sequence of
non-negative functions in L' which is increasing,

fisfe<s - <fasfapr<oae onf
and bounded, sup,,cy [ fodp < co. Then
f(@):= lim f,(z)

exists a.e., f € L*, and ||f — fnllzr — 0.
Theorem (Dominated convergence, Lebesgue). Let (f,), C L' be such that

(a) fn(x) — f(z) a.e. on Q
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(b) there exists g € L' such that for alln € N
[fn(2)| < g(x) ae

Then f € L* and || f, — fll1 — 0.
Lemma (Fatou). Let (fn), C L' with
(a) Vn e N: fp(z) >0 a.e.

(b) supper [ fudp < o0
Set f(z) := liminf, . fn(x) < o0o. Then f € L' and

/fdugliminf/fndu.
neN

Basic example: Q = R? A = Borel-measurable sets (or Lebesgue-measurable

sets) and p = Lebesgue measure on R%.
Notation: C,.(R%) = space of continuous functions on R¢ with compact sup-
port, i.e.,

C.(RY) = {f € C(RY)|3K C R? compact such that f(z) = 0Vz € K°}.
Theorem (Density). C.(R?) is dense in L'(R?), i.e., Vf € L'(RY)Ve > 03g €
C.(RY) with ||f — g|l1 < e.

The case of product measures (and spaces): (2, A1, p1), (2, Az, p2) two o-
finite measure spaces

Q= Ql X QQ

A=A A

W= ® ue by M(Al X AQ) = ,ul(Al) '/,LQ(AQ) VA, € Ay, Ay € As.
Theorem (Tonelli). Let F(= F(x,y)) : Q1 x Qo — [0, 00] be measurable and

(a) [ F(z,y)dps < oo a.e. in Q,
s

() [ (fF(x,y)du2>du1 < 0.

Q1 Qo
Then F € LY(Qq X Qa, pt1 ® po) and

/(/F(a:,y)duz)dm :/(/F(aj7y)du1)du2

Ql QQ Q2 Q1
=/ / Fz, y)d(p @ po).
QlXﬂz

Theorem (Fubini). If F € L'(Q; x Q2), i.e.,

/ F(a,y)ld(u @ pa) < oo,
Q1 xQ2

then
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(a) for a.e. x € Qy: F(z,:) € LY(Q) and [ F(z,y)dus € LL()

Q2
(b) for a.e. y € Qo : F(-,y) € L* () andﬂf F(z,y)du € Ly(Q)

Moreover

/(/F(x,y)duz)dm :/(/F(Ly)dm)du2

Ql Qz Q2 Q1
Q1 xQo

8.2 Definition and some properties of L” spaces

Definition 8.1. o 1 <p<oo:

LP = LP(Q,TF) := {f : Q — F|f is measurable and |f|’ € L'},

S =

11 =17z = [ 1f@)Pan)

Q
® p=o00:

L> = L>®(Q,F) :={f: Q= TF|f is measurable and there exists a constant C' < o0
such that |f(x)] < Ca.e. on Q},

I flloo :=lIfllpee :=inf(C] |f(z)| < Ca.e. on Q} =: esssupzcalf(x)].
Remark. If f € L™ then
lf @) < Ifllo a.e. on Q.

Indeed, by definition of || f|le, there exists Cr, \( || flloe (€-9- Cn = || flloc + %)
such that

|f(x)‘ S Cn a.e. on Q’

i.e., AN,, such that |f(x)| < Cp, Vo € Q\ N,, and p(N,) = 0.
Set N :=J,, N, and note

p(N) <> p(N,) =0

neN

and for alln € N :

lf(z)| <C, VeeQ\N

= [f@)] < flle Ve Q\N.
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Notation: If 1 < p < oo, then p’ given by % + 1% =1 is the dual exponent
of p.

Theorem 8.2 (Holder). Let f € LP and g € LP with 1 < p < oco. Then
fge L' and

1 glle < 1 f1lpllgllp-

Proof. Obvious for p =1 or p = oc.
So assume 1 < p < oo, and note that for all a,b >0

1 1
ab=—a? 4+ ab— —a?

1 1
< —aP? + sup(ab — —a®)
b>0 D

1 1.
= —a’ + =" ( also called Young’s inequality)
p p

Thus
1 p 1 '
[f(z)g(x)] < ];If(ff)l + Z7|9($)| a.e.
€ L' since f € LP, g€ L” .
Moreover,
1o 1
|fgldp < ];Hfl\p + HHQHPM
So for A > 0,

1 1 1oy o

[ 1foldn= [ InrSgldn < SIATIE + 1A gl
AP AP ,

= 2218l + = gl = hO.

Minimizing over A > 0 yields the claim, since

juf, h(A) = + (check this!
inf h(\) = | fll,llglly  (check this!)

O

Remark. There is a very useful extension of Holder in the form: If f1, fao, ..., fx
are such that f; € LPi for1 <j <k and%:Z?zl p%’ then f = f1-fo-... fr €
LP and

k
||pr < H ”fj”Pj‘
j=1

In particular, if f € LP N L7 for some 1 < p < q < oo, then f € L" for all
p<r<gqand

_ 1
171 < W7 lpllglla™  with == 2+ ——=, 0<0<1.
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Theorem 8.3. LP is a vector space and || - ||, is a norm for any 1 < p < oco.

Proof. The cases p =1 and p = oo are easy, so assume 1 < p < oo.
If f, f € LP, then

[f+9lP < (I +19)" < (2max(|f], |g]))?
= 2" max(|f[",[g|") < 2°(|f|" + [g]") € L”.

Moreover,
15+l = [ 17+ ol ~15 +gla
S/|f+9‘p_1|f|d,u+/|f+g|p_1|g|du. (%)

Note that p’ = ﬁ, SO

1\ 1
(1F+gi)" =1+l eL
so |f +g[P~! € LP" and by Holder, (x) yields
1F + gllp < ILf +glP "l (1l + llalle) = I + gllz= (LF Nl + llgllp)-
Since || f + g|l, < oo, this yields

I +glly < 1£1lp + llgllp-

Theorem 8.4 (Fischer-Riesz). LP is a Banach space for 1 < p < oco.

Proof. We distinguish the cases p = oo and 1 < p < 0.

Case 1: p = oo: Let (fn)n C L be Cauchy. Given k € N 3N, € N such that
| fm — Frlloo < % for m,n > Nj. Hence there exists a set Ey, C Q, u(Fx) = 0,
such that

|[fm(z) — frul2)| < % Vo € Q\ Ej and all m,n > Ny.

Put E := (J,cy Bk, note u(E) = 0 and

Ve e Q\E: |fm(z)— fu(z)] < for all m,n > Ny, (%)

1

k

that is, the sequence (f,(x)), is Cauchy (in R). So
f(z) = lim f,(x)

exists for all z € Q\ E and we simply set f(z) :=0 for x € E.
Letting m — oo in (x), we also see

Ve € Q\ E and all n > N.

x| =

[f (@) = fu(2)] <
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So

lf(@)| < |f(x) = fu(@)|+ folz) foraa. xzeQ.
— L

<3 <lifnlles

Hence f € L™ and [|f — fullos < 7 for all n > Nj. Thus f,, — f in L>!
Case 2: 1 < p < o0o:

Step 1: Let (fn,)n C LP be Cauchy. It is enough to show that there is a subse-
quence (fp,); that converges to some f € LP. Indeed, assume that f,, — f in
LP. Then

1f = fllp <N = Faillp + 1 = Finllps
so if € > 0 there exists N1 € N such that
€
15 = fullp < 5 V2N,
and there exists Ny € N such that
€
an - fm”P < 5 Vm,n 2 N2~
Note that n; > n (because of subsequence) so
€
1 for = fmllp < 5 Vlm = Na.

Hence for [ > max (N7, No) one has
€

5 e VYm > Ny,

1 = Fnlly < 1 = Fuullo + 1o = Fnllp < 5 +

ie, f — fin LP.
Step 2: There exists a subsequence (f,,) which converges in LP.
Extract a subsequence ( fy,) such that

1
frigr = Frullpy < 57 VLEN.
(To see that this exists proceed inductively: Choose n; € N such that || f, —
fallp < % Vm,n > nq. Then choose ny > ny such that || fr, — fullp < 2% Vm,n >

ng, etc.).
Claim: f,, converges to some f in LP. Indeed, writing f; instead of f,,,, we have

1
||fl+1_fl||p<? Vvl e N.

Set
gn(@) ==Y [frra(x) = fi(@)]
=1

and note that the sequence (g, ), is increasing. Also note that

lonlly <D it = fills <D 5 < =1
=1 =1 =1
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So
sup [|gnll, <1
n

and hence, by monotone convergence, g, (z) converges to a finite limit, say

g(x) = lim g,(z) =supg,(z) for a.a. z.

If m,n > 2, then
[fm (@) = (@) < |fim(@) = fna (@) + -+ [frga(z) = fu(2)]
<g(@)—gn-1(z) >0 ae.

So for a.e. z, (fn(x)), is Cauchy and converges to some finite limit, denoted by
f(x), say. Letting m — oo, we also see, for a.e. x,

[f(z) = fu(z)| < g(x) — gn-1(x) < g(x) for n > 2.

In particular, f € LP and, since g* € L' and f(z) — fn(z) — 0 a.e. as n — oo,
we can also apply dominated convergence to see

lf = fullp =0 asn— occ.

8.3 Reflexivity, Separability. The Dual of L”

We will consider the three cases

(A) 1<p< o

B)p=1
(C) p=o0
(A) Study of L? for 1 < p < oo.

This is the most favorable case: LP is reflexive, separable, and the dual of
LPis LY.

Theorem 8.5. L? is reflexive for 1 < p < co.

Proof. Step 1: (Clarkson’s first inequality) Let 2 < p < co. Then

|

"5 < s ey vieer )

Proof of (1). Enough to show

p

‘a+b

PJr‘afb
2

2

1
5(\a|p +[b|P) Va,beR.

Note that

P
2

o + B < (o + %)z VYa,B>0. (2)
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Indeed, if 8 > 0, then (2) is equivalent to
a)P a2 5
o) e (@) ) :
(5 3 3)
and the function (22 4 1)% — 2P — 1 increases on [0,00) and equals 0 at
x =0, so

ya
2

(22 +1)2 —2P —1>0 VYo >0.

Hence (3) and thus (2) hold.

Now choose o =

a-+b
2

7B:

a—b ‘

52| in (2) to see

+

’a+b

P ‘a—b
2

< (5 )

<
- 2 2

_ <a2_2|_b2)% < %(af’+b”),

where in the last inequality we used the convexity of the function z — z%

for p > 2.
O

Step 2: L? is uniformly convex, and thus reflexive, for 2 < p < oco.
Indeed, let f,g € L?,||fllp, < 1,|l9ll, <1 and ||f — g|| > €. Then from (1)
we get

|24 = s+ - |20 <1 (5)

=152, = 0= G)) == (-0 (3))),

=0.>0

So LP 2 < p < o0, is uniformly convex and hence reflexive by Theorem
7.44.

Step 3: L? is reflexive for 1 < p < 2.

Indeed, let 1 < p < oo and consider T : LP — (LP')*,
as follows: given u € LP, the mapping

1,1 _
st = 1, defined

Lp/9f0—>/ufdu

is a continuous linear functional on L¥’ (by Hélder) and thus defines an
element Tw € (LP )* such that

(Tw)(f) :/ufdu Vel
Claim:

HTU’”(LP/)* =||ul|lrr Vue€ LP.
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Proof. By Holder

Tu(f)] = | / wfdp| < / l [Fldp <l flly VF € 27

SO
Il gy = sup | [ sl <l

On the other hand, given u € LP, we set

fol) = {Alu(z)lpzu(z), if u(z) # 0

0, else

and note that, since p’ = 2=
p—1

/|fo(w)|”'du =\ /(|U|”_1)p,dﬂ =¥ / JulPdu = AP ||ul}

SO

1

s

[ follpy = Mulb™t =1 if A=
[l

With this choice of f, we have
[ Tull Lorye = | Tu(fo)| = llullp

so the claim follows and T : LP — (LP)* is an isometry!. Since L? is a
Banach space, we see that T'(LP) is a closed subspace of (L )*.

Now assume 1 < p < 2. Since 2 < p’ < oo, we know from Step 2, that
LP" is reflexive. Since a Banach space FE is reflexive if and only if its dual
E~ is reflexive, we see that (Lp/)* is also reflexive and since every closed
subspace of a reflexive space is also reflexive, we see that T'(LP) is reflexive
and thus L? too. O

O

Remark. LP is also uniformly conver for 1 < p < 2 due to Clarkson’s
second inequality

Hf+9
2 2

Y| e
2 < G +al)”

p

which is trickier to prove than his first inequality.

Theorem 8.6 (Riesz representation theorem). Let 1 < p < oo and ¢ €
(LP)*. Then there exists a unique u € LP such that

o) = [ usd
Moreover,

lullpr = [l zry--



80

CHAPTER I. NVS, BS AND MS

Remark. Theorem 8.6 is extremely important! It says that every con-
tinuous linear functional on LP with 1 < p < oo can be represented in a
“concrete way” as an integral. The mapping ¢ — u is linear and surjective
and allows us to identify the abstract space (LP)* with LP'! It is the sole
reason why one always makes identification (LP)* = ¥ for1l < p<oo.

Proof. Consider T : LP" — (LP)* defined by

Tu(f) := /ufdp Yu € Lp/,f erLr
and note that by Step 3 in the proof of Theorem 8.5 one has
1TullLey = llully  Vue L.

So we only have to check that T is surjective. Indeed, let E = T'(L?") which
is a closed subspace of (LP)*. So it is enough to show that E is dense in
(LP)*. For this, let h € (LP)** satisfy

ho) =0 Yo E,

i.e., h(Tu) = 0Yu € L. Since L? is reflexive, h € L? and

h(Tu) = Tu(h) = /uhdu.

So we have
/uhdu =0 Yuel”.
Choosing
uw=|hP~2h e L¥
one sees

O:/uhd,u:/\mpdu

so h = 0. Hence every continuous linear functional on E C (LP)* vanishes
on (LP)*, so E is dense in (LP)*. O

Theorem 8.7. The space C.(R?) is dense in LP(R?) for every 1 < p < oo.

Some notations:

e Truncation operator T, : R — R,

T ( ) T, if |7‘\ <n,
n\T") = .
—m, if |7"\ > n.

e Characteristic function: for £ C § let

, ifxekl,
Lo(z) = {0 else
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Proof of Theorem 8.7. Step 1: LP N L is dense in LP. (L = bounded
functions with compact support).
Indeed, let f € LP. Put

gn = 1p,To(f) € L,

where B, = B,(0) = {z € RY| |z| < n}. Since |g,| < |f| € L? ¥n and
gn — [ a.e., Dominated convergence yields

lgn — fllp = 0 asn — oco.

Step 2: C.(R?) is dense in LP N L w.r.t. || - ||

Indeed, let f € LPN LS. Since f is bounded and has compact support, we
have f € L' also. Let ¢ > 0. By density of C.(R%) in L', for any 6 > 0
there exists g € C.(R?) such that

If =gl <6

W.lo.g., we may assume that ||g|lcc < || f]loo, otherwise simply replace g

by Tn(g) with n = ”fHoo
Now note

F 1-5 51 1-1
1f = gllp < I1f = glITI1f = glloo ™ < 67 (2 flloc) 7.
Choosing ¢ so small that 6%(2||f||oo)17% < € we see

1f=gllp <e.

Theorem 8.8. LP(RY) is separable for any 1 < p < oo.

Remark. As a consequence, LP(2) is separable for any measurable subset
Q C R%. Indeed, let I be the canonical isometry from LP(S)) into LP(RY)
by extending a function f : Q — F to R? by setting it zero outside 2. Then
LP(Q)) may be identified with a subspace of LP(RY), hence LP(SY) is also
separable, whenever LP(R?) is! (see Theorem 7.36).

Proof of Theorem 8.8. Let R be the countable family of sets of the form
d
R= H(ak,bk), ag, b € Q
k=1

and & = vector space over Q (or Q + iQ) generated by the functions
(1g)rex- So € is countable, since € consists of finite linear combinations
with rational coefficients of functions 1g.

Claim: € is dense in LP(R?).

Indeed, given f € LP(R%),e > 03f; € C.(RY) such that ||f — f1]l, < .
Let R € R be any cube such that supp(f) C R.

Subclaim: Given any & > 0, there exists a function f, € & such that

| f1 — fallp < ¢ and supp(f2) C R.
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Indeed, simply split R into small cubes in R where the oscillation (sup — inf)
of fi is less than §. Then

1 1
11 = fallp < Ilf1 = falloo|RI» < 6|R|?,
where |R| = volume of R. By choosing § > 0 such that 5|R|% < § we have

If = fallp < N = fillp + 11 = fallp <e
and fo € €. O

Study of L'.
The dual space to L! is described in

Theorem 8.9 (Riesz representation theorem). Let ¢ € (L*)*. Then there
exists a unique function u € L such that

o) = [usdn vrer
Moreover

[ulloo = llllzry--

Remark. Again, Theorem 8.9 allows us to identify every abstract contin-
uous linear functional ¢ € (LY)* with a concrete integral. The mapping
¢ — u, which is a linear surjective isometry allows to identify the ab-
stract space (L*)* with L>. Therefore, one usually makes the identification
(Ll)* = [,

Proof. Recall that we assume that €2 is o-finite, i.e., there exists a sequence
Q,, C Q of measurable sets such that Q = (J,, 2, and u(Q,) < co Vn. Set
Xn = 1, .

Uniqueness of u: Suppose u,us € L™ satisfy

o(f) Z/UlfdMZ/uzfdu Vfe L.
Then u = u; — ug satisfies
/ufdu:O VfelLl (%)

Let

. e ifu#0,
sign u = { I )
0, ifu=0,

and choose f = 1,sign v in (*). Then

/ luldp =0 Vn
Qnp



8. L* SPACES 83
so u =0 on €Q,, hence u = 0.
Existence of u: Step 1: There is a function # € L? such that
O(x)>e, >0 Ve, Vn.

Indeed, let 6 = a1 on Q1, 0 = ag on Qo \ Qy, ...,0 = @, on Q, \ Q1
etc. and adjust the constants «,, > 0 so that 6 € L.
Step 2: Given 6 € (L')*, the mapping

L*> f s 0(0f)

defines a continuous linear functional on L?! So by the Riesz representation
theorem for L?, there exists a function v € L? such that

o(6f) = / ofdp Vi eI (s5)

Set u(x) := % (well-defined since § > 0 on §2). Note that u is measurable

and, with x,, := 1, , we have uy, € L? Vn.
Claim: u has all the required properties.
Choosing f = x,§ € L? for g € L™ in (**) we have

¢(xng) = /uxngdu Vg e L. (% % *)

Claim: u € L* and ||[ulco < [|9]l (1)

Proof. Fix C > ||¢[|(z1)- and set
A:={x € Q| Ju(x)| > C}.

We need to show that pu(A) = 0.
Choosing g = xasign u in (x x x), we see

/ luldp = /uxngdu = ¢(Xng)

ANQ,
< ¢l 21y« Ixngllx
= H¢||(L1)*H'(A N Qn)-

Note that |u| > C on A, so

/ luldp > C / dp = Cp(ANQy,)

ANQ, ANQ,

and thus
Cu(AnN Qn) < H¢||(L1)*U(A N Qn)v
so, since C' > |||/ 1)+, we must have

wANQ,)=0 VYn
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and since A = AN (UnQn) =U,ANnQ,
p(A) = p( JANQ,) <> m(ANQ,) =0.

So A is a null set and ||ul|ec < [|@[(£1)+- O

Claim:
o(h) = /uhd,u Vh e L. (5 * o)

Indeed, choose g = T}, h in (x * *) and note that x,T,,h — h in L.
Claim:

DMLy = llulloo-
Indeed, by (x * xx) one sees
()| < llullssllblly VR € L*
50 |9l (z1)+ < Jlulloo- O

Remark 8.10. The space L' is never reflexive, except in the trivial case
where Q consists of a finite number of atoms. Then L' is finite-dimensional!
Indeed, assume that L' is reflexive and consider two cases

(1) Ye > 03A. C Q measurable with 0 < p(A:) < €.

(ii) Je > 0 such that u(A) > € for every measurable set A C Q with
w(A) > 0.

In case (i) there exists a decreasing sequence A, of measurable sets such
that

0<p(A,) =0 asn— oco.
(Choose first any sequence By, such that
0<p(By) <27

and set Ay, = Uz, Bk- )
Let xp, =14, and set

_ Xn
Ixalls

u

Since ||ully = 1 and since we assume that L' is reflexive, Theorem 7.28
applies and gives us a subsection (which we still denote by (un)n) and
uw € L' such that u,, — u weakly in L, i.e.,

/ungbdu - /uquu Vo € L.
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Moreover, for fized j and n > j we have
/undu = /uandﬂ =1
AJ

so letting n — oo, we have
/ud,u: /uxjdu: lim /unxjdp: 1 VjeN
n—oo
Aj
But, by dominated convergence, we have

/uxjd,u—>0 as j — oo

which is a contradiction. So L' is not reflexive.

In case (it) the space Q is purely atomic and consists of a countable number
of distinct atoms (ay,), unless there are only finitely many atoms. In this
case, L' is isomorphic to I'(N) and we need only to show that I* is not
reflexive. Consider the canonical basis

en=(0,...,0, 1 ,0,...).
n—th slot

Assuming that I* is reflerive, there exwists a subsequence (e, ) and some
x € 1! such that e,, — x in the weak topology o(I',1°°), i.e.

(pren,) —(p,x) Yoel™.

——

=3 #(i)eny, (4)
; =p; = e 1 ..
Choosing ¢ = ¢; = (0,0,...,0, ,1,...) we get
Jj—th slot
ﬁmw—/

=1 Vk>j

but

(gjrx) =Y (i) =0 asj— oo,
n>j

since x € I', a contradiction.

Study of L°°.

This is more complicated and we will not give a full answer. We already
know L> = (L')* by Theorem 8.9. Being a dual space, L> has some nice
properties, in particular

e The closed unit ball By is compact in the weakx topology o (L>, L)
by Theorem 7.2.
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e If O C RY is measurable and (f,), is a bounded sequence in L°°(2),
there exists a subsequence (fp, )i and some f € L* such that f,, — f
in the weaks* topology o(L>, L'). This is a consequence of Corollary
7.42 which applies, since L*° is the dual space of the separable space
L.

However, L° is not reflexive, except in the case where {2 consists of a finite
number of points, since otherwise L!(§)) were reflexive (since a Banach
space E is reflexive if and only if E* is reflexive), and we know by the
previous discussion that L' is not reflexive (Remark 8.10)! Thus, the dual
space (L*°)* contains L!, since L= = (L')*, and (L>)* is striclty bigger
than L'. Thus there are continuous linear functionals ¢ on L> which
cannot be represented as

o(f) = /ufdu Vf € L™ and some u € L'.
Example. Let ¢y : C.(R?) — R (or C) be defined by

¢o(f) == f(0) Vf € Ce(RY).

This is a continuous linear functional on C.(R?) C L>(R%) and by Hahn-
Banach, we may extend ¢q to a continuous linear functional ¢ on L>=(R?)
and

o(f) = f(0) VfeC(RY.

BUT there is no u € L' such that

~—

o) = [usdu ¥rer, (+
Assuming that such a function u € L exists, we get from (x) that

/ufdm — 0 Wf e CuRY, £(0) = 0.

By some result from measure theorey, this implies that u = 0 a.e. on
R?\ {0}, hence u =0 a.e. on R?, but then

o(f) = /deu —0 VfeL®

a contradicion.

Remark. In fact, the dual space of L> is the space of (complex valued)
Radon measures.

Theorem 8.11. L>=(R?) is not separable. (In fact, L>(S)) is not separa-
ble, except if Q consists of a finite number of atoms).

Lemma 8.12. Let E be a Banach space. Assume that there exists a family
(0i)ier C E such that

(a) Yi € I,0; #0 is open
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(b) O;,N0; =0 ifi#j

(c) I is uncountable

Then E is not separable!

Proof. Suppose that E is separable and let (u,)nen be a dense countable
set in E. For each i € I the set O; N (up)nen # 0 so we can choose n(7)
such that u, ;) € O;.

Note that the map I i+ n(i) € N is injective, since, if n(:) = n(j), then

Up(3) = Un(j) € 0;N Oj

so by (b) we must have i = j!
Therefore, I is countable, a contradicion! O

Proof of Theorem 8.11. Let I = R? and w; := By (i) (ball of radius one in
R? centered at i € RY).

Note:
wilw; = (wi \wj) V (wj \w;) #0 if i # j.
Let
0= {f € LRI f ~ Lol < 5}

and check that (O;);ecr obeys the assumptions of Lemma 8.12 (for this note
that || 1., — 1, | = 1ifi # j!) so by Lemma 8.12, L is not separable! [

Reflexive | Separable Dual space
IP1<p<oo| YES YES g
LT NO YES L
L™ NO NO strictly bigger than L'!

9 Hilbert spaces

9.1 Some elementary properties

Definition 9.1. (a) Let H be a real vector space. A (real) scalar product
< wu,v > on H is a bilinear form < -,- >: H x H — R that is linear in both
variables such that Yu,v € H

<u,v>=<v,u> (symmetry)
<u,u>>0 (positivity)
<u,u>=0=>u=0

(b) If H is a complex vector space, a (complex) scalar product on H is a map
<-,-> Hx H— C such that Vu,w,z € H,a, 8 € C:

<z,ou+pw>=a<z,u>+<zT,W>
<uw>=<w,u>
<u,u>>0 and<u,u>=0=u=0
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So < -,- > is linear in the second argument and

<au+ pw,x>=<zau+ fw >
:d<x,u>+/3<x,w>
=a<u,z>+B<wz>

so it is “anti”-linear in the first component.

One always has the Cauchy-Schwarz inequality

Nl

1
| <wu,0>| <<wu,u>2<v,0>2.
Proof. W.l.o.g., u,v # 0.

0<<tu—sv,tu—sv>=t<u,tu—sv>—5<uvtu—sv>
=t]? <u,u > —ts <u,v > —5t<v,u>+s|? <v,0>
———
=<u,v>
= t]? <u,u > +|s]* <v,v > —2Re(ts < u,v >)
= [t]* < u,u > +[s]> < v,v > —2Re(tse”| < u,v > |)

where 6 is such that < u,v >= | < u,v > |e®.
Choose s = re= " r,t > 0 to get

0<t*<u,u>+r?<wv,v>-2Re(tr] <u,v>]|)

=tr|<u,v>|

1/t r —i6 —i0
:>|<u,11>|§§(7<u,u>+¥<v,v>—<tu—r6 v, tu —re v>>.
r

1
Now choose t,r such that A = % = Svw>?
<u,u>2
1 11
:>|<U,U>|§<’U,,u>2<fv,v>2 —§<’>
—_——

>0

so we have the inequality, and if
1 1
| <u,v>|=<uu>2<v,v>2

then we must have

< tu— re*iev, tu—re Py >=0

for some choice of t,r > 0. So tu — re~*?v = 0, hence u and v are linearly

dependant! O
Because of the Cauchy-Schwarz,

|u] :=+/<u,u> (the norm induced by < -,->)
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is a norm (we write |u| instead of ||u|| if the norm comes from a scalar product).
Indeed,

lu+v]? =<u+v,u+v>=<u,u>+2Re < u,v >+ < v,v >
< |ul? +2| < u,v > |+ |v]?
< [ul? + 2Ju|[v] + [v]?
= (lul +[v])?

SO
u+ o] <ful + o].

Recall the parallelogram law

b2 -b2 1
‘a; ’ +’a2 ‘ :1(<a—|—b,a—|—b>+<a—b,a—b>)

1
= Z(\a|2+ <a,b>+ <ba>+[b?
+lal*~ < a,b> — < b,a > +b|?)
Lo
== b?).
S (al? + bP)
Definition 9.2. A Hilbert space is a (real or complex) vector space equipped

with a scalar product < -,- > such that H is complete w.r.t. the norm induced
by < -, - >.

Example. o L2(Q) with

< u,v >i= /ﬂvdu
Q

18 a Hilbert space.
o [?(N) with
<z,y>= Z TnYn
neN
is a Hilbert space.
Proposition 9.3. Any Hilbert space H is uniformly convex and thus reflexive.

Proof. Let ¢ > 0,u,v € H,|u] < 1,|v] <1 and |u—v| > e. Then, by the
parallelogram law

‘u—kv‘? u—v‘2 e?

ST,
- 2

SO

with d =1 — (1 —£7)% > 0. O
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Theorem 9.4 (Projection theorem). Let H be a Hilbert space and K C H, K #
0, a closed convex set. Then for every f € H there exists a unique u € K such
that

|f —ul = inf |f —v|=: dist(f, K) (1)
Moreover, u is characterized by the property
ueK and Re< f—u,v—u><0Vve K. (2)

Notation: The above element u is called projection of f onto K and is
denoted by

u=: Pgf.
Proof. Existence: 1st proof: The function
Ksv— o) :=|f—v
is convex, continuous and

lim V) = 0.
veEK,|v|—o0 (P( )
So by Corollary 7.33 we know that ¢ attains its minimum on K since H is
reflexive.
2nd proof: Now a direct argument: Let (v,), C K be a minimizing sequence
for (1), i.e., v, € K and

dp = |f —v,| = d:= inf |f —v].
|f = vnl Jnf |f — |
Claim 1: v := lim,,_yoo v, exists and v € K.
Indeed, apply the parallelogram identity to a = f — v, and b = f — v,, to see

Up — Um
2

n o+ U |2 2 1 1
R = 0F = vl + 1f = vnl®) = 5(&2 + d2,).

Since K is convex, % € K, so

Up + Uy |2
_Un m >d2

-

and hence
U —Um |2 _ 1 o 2 2
5 Si(d,ﬂ—dm)—d —0 asn,m— oo

S0

lim |vy, —vp| =0,

n.m—oo

and (vy,), is Cauchy! Thus v = lim,,_, o, v, exists and since K is closed, v € K.
Equivalence of (1) and (2): Assume u € K satisfies (1) and let w € K. Then

vi=([1-thu+tweK Vtel0,1]
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SO

[f —ul < |f =l = |(f = u) — t{w —u)]

= |f—ul? <|f—ul®* —2tRe < f —u,w —u > +t*|w — u|?
S0

2Re < f —u,w —u> < tlw—ul* Vte(0,1]
—+0 ast—0

so (2) holds.
On the other hand, if (2) holds, then for v € K,
lu—fP—lo—fP=<u—fiu—f>—-<v—fo—f>

= |ul* = 2Re < f,u > +|f|* — |v|* + 2Re < f,v > —|f|?
= |u|* = [v|* + 2Re < f,v —u >
= |ul® = |v* + 2Re < f —u,v —u > +2Re < u,v — u >
= —|u|* — [v|* + 2Re < u,v > +2Re < f —u,v —u >
=—|u—v*+2Re < f —u,v—u> <0,

<0 by (2)
so (1) holds.
Uniqueness: Assume that uy, us € K satisfy (1). Then

Re< f—uj,v—u; ><0 YvekK (3)

Re < f—us,v—us ><0 YveK (4)
Choose v = ug in (3) and v =y in (4). Then

Re < f—up,up —up > <0,
Re < f —ug,us —u; > > 0.

=0>Re< f—uj,ug—uy >—Re < f—us,us —u >
= Re < —uq,us —uy > +Re < ug,us — uyp >
= Re < us — uy,us —uy >
:\uQ—ul\QZO
S0 |ug —u1| =0, i.e., ug = uy. O

Remark. (1) It is not at all surprising to have a minimization problem related
to a system of inequalities. Let F : [0,1] — R be differentiable (with left and
right derivatives at 1 and 0, resp.) and let u € [0,1] be a point at which F
achieves its minimum. Then we have three cases:

either u € (0,1) and F'(u)=0
oru=0 and F'(0)>0
oru=1 and F'(1)<1
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All three cases can be summarized as

uwe 0,1 and F'(u)(v—u)>0 Vovel01].

(2) Let E be a uniformly convex Banach space, K C E,K # 0, closed and
conver. Then Vf € E there exists a unique u € K such that

I = ull = inf |1f = ol = dist(f, K).

Proposition 9.5. Let K C H,K # 0, closed and convex. Then Pk does not
increase distance, i.e.,

|Pr fi — P fa| < |f1 — f2| Vfi, fo € H.

Proof. Let u; := Pk f;. Then as in the uniqueness proof of Theorem 9.4, we
have by (2)

Re< fi—uj,v—u; ><0 Ywek,
Re < fo—ug,v—uy ><0 YveK.

Choose v = us in the first inequality and v = u; in the second to see

Re < f1 —wuy,ug —up > <0,
R6<f2—UQ,UQ—U1>ZO.

Therefore
0> Re< f1 —uy,up —uy > +Re < fo—ug,u; —us >
= Re < fi —u; — fo +ug,us —ug >
= Re < f1 —fg,UQ — Uy > —|UQ —U1|2.
So
UQ—U1|2 < Re < f1 —fg,UQ—U1 >
<< fi— fasug —uy > |
< |f1 = follug —uql.
~—
CSI
Thus

uz —u] < |f1 = fol-
O

Corollary 9.6. Assume that M C H is a linear subspace. Let f € H. Then
u = Py f is characterized by

ueM and < f—-uv>=0 YveM, (6)

i.e., f —u is perpendicular to all v € M. Moreover, Py is a linear operator
called the orthogonal projection.



9. HILBERT SPACES

Proof. Step 1: By (2) we have
Re< f—u,v—u>=0 Yve M.
Since M is a subspace, tv € M Vt € R,v € M. Hence

Re< f—utv—u> <0 VteR

=tRe<f—u,v>—Re<f—u,v>

and thus for ¢ > 0:

1
Re < f —u,v >< ¥R6<ffu,v>%0 as t — oo

SO
Re < f—u,v><0
and for ¢t < 0:
Re<f—u,v>2%Re<f—u,v>—>0 as t — o0
SO
Re< f—u,v><0 and Re< f—u,v>>0,
ie.,

Re< f—u,v>=0 YveM.
Replace v by —iv. Then
O=Re< f—u—-tw>=Re(—i< f—u,v>)=Im< f—u,v>

so (6) holds.
Step 2:

|Pufl<Ifl VfeH
Indeed, since M is linear, 0 € M and P,;0 = 0, so by Proposition 9.5
|Prf| = |Puf — PuOl < [f = 0] = [f].

Step 3: If u satisfies (6), then u = Py f.
Indeed, if

<f—-uv>=0 YvelM,
then, since u € M, and M is linear, v —u € M, so
<f—-u,v—u>=0.

Hence (2) holds which characterizes u = Py f!
Step 4: Py : H — M is linear.
Indeed, if f1, fo € H,u; = Parfj,a1,a2 € F, then

< fi—uj,v>=0 YveM,
< fo—ug,v>=0 Yve M.

93
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Thus

0=< Odlfl — U, v >+ < Oégfg — U2,V >
=< a1 fi +asfo— (1ur + avug), v >,

i.e.

ajuy + agup = Py (aq fi + ag fa).

9.2 The dual space of a Hilbert space

There are plenty of continuous linear functionals on a Hilbert space H. Simply
pick f € H and consider

u—=< fou>.

The remarkable fact is that all continuous linear functionals on H are of this
form!

Theorem 9.7 (Riesz-Fréchet representation theorem). Given any p € H* there
exists a unique f = f, € H such that

o(u) =< f,u> VYue H.
Moreover,
1= llllz--
Proof. 1st: Consider the map T : H — H*,
Tf =< f,->€ H",
ie.
Tf(u) =< fiu>.

It is clear that ||T'f||g~ = |f| (why?), so T is an isometry from H onto T(H),
ie., T(H) is a closed subspace of H*. Assume h € (H*)* which vanishes on
T(H). Since H is reflexive, h € H and

Tf(h)=<f,h>=0 VfeH.
Take f = h. Then
|2 =<h,h>=0 = h=0,

i.e,, T(H) is dense in H* and thus T(H) = H.
2nd: Given ¢ € H*| let

M= ({0} CH
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and note that M is closed since ¢ is continuous.
Assume M # H (otherwise ¢ = 0 and we take f = 0). Pick any go € H such
that ¢©(go) # 0 and set g1 := Pargo € M. Note

©(g0 — g1) = ¢(90) — p(g91) = ¢(g0) # 0
o

SO
go — g1 # 0.
Put
_ 90— 9
l90 — 91
Then |g| =1,
()
|90 — 91
and
<gv>=7———<go—g1,v >= —— < go — Ppgo,v>=0
|90—91| |go—g1\
by Corollary 9.6.
Given u € H let
vV=u—Ag

and choose A such that v € M, i.e.,

O)
©(9)
But then
0=<g,v>=<g,u—Ag >
=< g,v>-A<g,9>
—
=1
—cgus 2
©(9)
Thus
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9.3 The Theorems of Stampacchia and Lax-Milgram
In the following, let H be a real Hilbert space.
Definition. A bilinear form a : H x H — R is said to be

(i) continuous, if there exists C > 0 such that

la(u,v)| < Cluljv] Yu,v € H;

(i) coercive, if there exists o > 0 such that

a(v,v) > alv]* Vv e H.

Theorem 9.8 (Stampacchia). Assume that a is a continuous coercive bilinear
form on a real Hilbert space H. Let K C H,K # 0 closed and conver. Then
given p € H* there exists a unique u € K such that

alu,v—u) > plv—u) YvekK. (1)

Moreover, if a is symmetric, then u is characterized by

ue K and %a(u, u) —p(u) = Ulg}f{ (%a(v,v) - go(v)). (2)

We need

Theorem 9.9 (Banach fixed point theorem). Let X # () be a complete metric
space and S : X — X be a strict contraction, i.e.,

d(S(z1),S(z2)) < kd(x1,22) V1,20 € X with k < 1.
Then S has a unique fized point u, i.e., u = S(u).

Proof of Theorem 9.8. By Riesz representation theorem there exists f € H such
that

o) =< f,v> YveH.

Note that also the maps v — a(u,v) € H*, so again there exists a unique
element in H, denoted by Awu such that

a(u,v) =< Au,v > Yv € H.
Note: A is a linear operator from H to H and

|Au| < Clu| VYu € H,
< Au,u > > alul* Vue€ H.

So problem (1) says we should find u € K such that
<Au,v—u>>< firv—u> Yve K. (3)
Let p > 0 and note that (3) is equivalent to

<pf—-pAut+u—uv—u><0 WweK, (4)
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ie.,
u= Pk (pf — pAu+u).
For v € K set
S(v) == Pr(pf — pAv +0).

Claim: Choosing p > 0 cleverly, S is a strict contraction, so it has a unique fixed
point!
Indeed,

|Sv1 — Svs| = [P (pf — pAvy +v1) — Pr(pf — pAvs + va)|
<|pf — pAvi +v1 — pf + pAvy — va|
= [(v1 — v2) + p(Avy — Avg))|

= |Sv; — Sva|? = vy — va)? — 2p < Avy — Avg, vy — vg > 4p?|Avy — Awy|?

>alv—vz|?

< vy — v 2(1 = 2pa + p2C?).
Choose p so that
K? =1—2pa + p*C? < 1,

ie, 0<p< % Then S has a unique fixed point.

Assume now that a is symmetric. Then a(u,v) defines a new scalar product
on H with norm /a(u,v) which is equivalent to the old norm |u|. Thus H is a
Hilber space for this new scalar product. By Riesz-Fréchet for a(u,v), it follows
that given ¢ € H* there exists a unique g € H such that

o(u) =alg,u) Yue H.
Note that problem (1) amounts to finding some u € K such that
alg—u,v—u) <0 YvekK (5)

but the solution to (5) is the projection onto K of g for the new scalar product
a! By Theorem 9.4 u € K is the unique element which achieves

inf \/a(g —v,g —v),
i.e., one minimizes on K the function

v alg—v,g—v)=a(v,v) —2a(g,v) + a(g,9)
= a(v,v) — 2p(u) + alg, 9)

or equivalently, the function

v %a(v,v) — o(u).
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Corollary 9.10 (Lax-Milgram). Assume that a(u,v) is a continuous coercive
bilinear form on H. Then given any ¢ € H* there exists a unique u € H such
that

a(u,v) = ¢(u) Yve H. (6)

Moreover, if a is symmetric, then u is characterized by

ue H and %a(u,u) —p(u) = livr‘lefH(a(v,v) —o(v)). (7)

Proof. Apply Theorem 9.8 with K = H and use linearity of H as in the proof
of Corollary 9.6. O
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