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Chapter I

Normed vector spaces,
Banach spaces and metric
spaces

1 Normed vector spaces and Banach spaces

In the following let X be a linear space (vector space) over the field F ∈ {R,C}.

Definition 1.1. A seminorm on X is a map p : X → R+ = [0,∞) s.t.

(a) p(αx) = |α|p(x) ∀α ∈ F,∀x ∈ X (homogeneity).

(b) p(x+ y) ≤ p(x) + p(y) ∀x, y ∈ X (triangle inequality).

If, in addition, one has

(c) p(x) = 0⇒ x = 0

then p is called a norm. Usually one writes p(x) = ‖x‖, p = ‖ · ‖. The pair
(X, ‖ · ‖) is called a normed (vector) space.

Remark 1.2. • If ‖ · ‖ is a seminorm on X then∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖ ∀x, y ∈ X (reverse triangle inequality).

Proof.

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖
⇒ ‖x‖ − ‖y‖ ≤ ‖x− y‖

Now swap x&y: ‖x‖ − ‖y‖ ≤ ‖y − x‖ = ‖(−1)(x− y)‖ = ‖x− y‖.
Hence ∣∣‖x‖ − ‖y‖∣∣ = max(‖x‖ − ‖y‖, ‖y‖ − ‖x‖) ≤ ‖x− y‖.
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• ‖~0‖ = ‖0.~0‖ = |0|.‖~0‖ = 0.

Interpret ‖x− y‖ as distance between x and y.

Definition 1.3. Let (xn)n∈N = (xn)n be a sequence in a normed vector space
X ((X, ‖ · ‖)). Then (xn)n converges to a limit x ∈ X if ∀ε > 0∃Nε ∈ N s.t.
∀n ≥ Nε it holds ‖xn − x‖ < ε (or ‖xn − x‖ ≤ ε). One writes xn → x or
limn→∞ xn = x.
(xn)n is a Cauchy sequence if ∀ε > 0∃Nε ∈ N s.t. ∀n,m ≥ Nε it holds
‖xn − xm‖ < ε (or ‖xn − xm‖ ≤ ε).
(X, ‖ · ‖) is complete if every Cauchy sequence converges.
A complete normed space (X, ‖ · ‖) is called a Banach space.

Remark 1.4. Let X be a normed vector space, (xn)n a sequence in X.

(a) If xn → x in X, then (xn)n is a Cauchy sequence.

Proof. Given ε > 0∃Nε : ∀n ≥ Nε : ‖x− xn‖ < ε
2 . Hence for n,m ≥ Nε we

have

‖xn − xm‖ = ‖xn − x+ x− xm‖ ≤ ‖xn − x‖+ ‖x− xm‖ < ε.

(b) Limits are unique!
If xn → x in X and xn → y in X, then x = y.

Proof.

‖x− y‖ = ‖x− xn + xn − y‖
≤ ‖xn − x‖+ ‖xn − y‖ → 0 + 0 = 0 as n→∞.

(c) If (xn)n converges or is Cauchy, then it is bounded, i.e.

sup
n∈N
‖xn‖ <∞.

Proof. Take ε = 1. Then there exists N ∈ N s.t. ∀n,m ≥ N : ‖xn − xm‖ <
1. In particular, ∀n ≥ N : ‖xn − xN‖ < 1.

⇒ ‖xn‖ = ‖xn − xN + xN‖ ≤ ‖xn − xN‖+ ‖xN‖ < 1 + ‖xN‖ (∀n ∈ N)

⇒ ∀n ∈ N : ‖xn‖ ≤ max(‖x1‖, ‖x2‖, . . . , ‖xN‖, 1 + ‖xN‖) <∞.
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Let X be a normed vector space, S 6= ∅ a set. For functions f, g : S → X,
α, β ∈ F define

f + g :

{
S → X

s 7→ (f + g)(s) = f(s) + g(s)

αf :

{
S → X

s 7→ (αf)(s) = αf(s)

So the set of functions from S to X is a normed space itself!
In case X = R, we write f ≥ α (or f > α) if f(s) ≥ α for all s ∈ S (f(s) > α

for all s ∈ S). Similarly one defines α ≤ f ≤ β, f ≤ g, etc.

Example 1.5. (a) X = Fd, d ∈ N is a Banach space (or short B-space) with
respect to (w.r.t) the norms

|x|p :=
( n∑
j=1

|xj |p
) 1

p

, 1 ≤ p <∞,

|x|∞ := max
j=1,...,d

|xj |.

Here x = (x1, x2, . . . , xd) ∈ Fd.

(b) Let Ω 6= ∅, L∞(Ω) = L∞(Ω,R) = the set of all real-valued functions on Ω
which are bounded, i.e.

f ∈ L∞(Ω) then ∃Mf <∞ : |f(ω)| ≤Mf for all ω ∈ Ω.

Norm on L∞(Ω): for f ∈ L∞(Ω) : ‖f‖∞ = supω∈Ω |f(ω)| (check that this
is a norm!).
Claim: (L∞(Ω), ‖ · ‖∞) is a Banach space.

Proof. Normed vector space is clear.
Take (fn) a Cauchy sequence in L∞(Ω) w.r.t. ‖ · ‖∞. We have: ∀ε > 0∃N :
∀n,m ≥ N : ‖fn − fm‖∞ < ε.
Fix ω ∈ Ω, then

(
fn(ω)

)
is a Cauchy sequence in R since

|fn(ω)− fm(ω)| ≤ sup
ω∈Ω
|fn(ω)− fm(ω)| = ‖fn − fm‖∞ < ε ∀n,m ≥ N.

Since R is complete, f(ω) := limn→∞ fn(ω) exists (this f is the candidate
for the limit). We have

|f(ω)| ≤ |f(ω)− fn(ω)|+ |fn(ω)|
= lim
m→∞

|fm(ω)− fn(ω)|+ |fn(ω)| ≤ ε+ |fn(ω)|︸ ︷︷ ︸
<∞

⇒ supω∈Ω|f(ω)| ≤ ∞,

i.e., f ∈ L∞(Ω).
Take ε > 0. Then

|fn(ω)− f(ω)| = lim
m→∞

|fn(ω)− fm(ω)|︸ ︷︷ ︸
≤ε if n,m≥N

≤ ε if n ≥ N
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⇒ ∀n ≥ N : ‖fn − f‖∞ ≤ ε, i.e., fn → f w.r.t. ‖ · ‖∞.

(c) X = C([0, 1]), ‖f‖1 :=
1∫
0

|f(t)|dt is a norm,
(
C([0, 1]), ‖·‖1

)
is not complete.

Proof.

‖f‖1 ≥ 0 ∀f ∈ C([0, 1]).

‖f + g‖1 =

1∫
0

|f(t) + g(t)|︸ ︷︷ ︸
≤|f(t)|+|g(t)|

dt ≤ ‖f‖1 + ‖g‖1

‖αf‖1 =

1∫
0

|αf(t)|dt = |α|‖f‖1

So ‖ · ‖ is a seminorm.
If f 6≡ 0 and f is continuous, we see that there exist an interval I ⊂ [0, 1],
δ > 0 such that |f(t)| ≥ δ ∀t ∈ I.

⇒ ‖f‖1 =

1∫
0

|f(t)|dt ≥
∫
I

|f(t)|︸ ︷︷ ︸
≥δ

dt ≥ δ.lehgth of I > 0.

So ‖ · ‖1 is a seminorm. Now take a special sequence

fn(t) :=


0, if 0 ≤ t ≤ 1

2 −
1
n

nt− n
2 + 1, if 1

2 −
1
n < t < 1

2

1, if t ≥ 1
2

(n ≥ 3)

For m ≥ n ≥ 3:

‖fn − fm‖1 =

1
n∫

1
2−

1
n

|fn(t)− fm(t)|dt ≤ 1

n
→ 0 as n→∞,

so (fn) is a Cauchy sequence.
Assume that fn → f ∈ C([0, 1]). Fix α ∈

[
0, 1

2

)
, n : 1

2 −
1
n ≥ α

0 ≤
α∫

0

|f(t)|dt =

α∫
0

|fn(t)− f(t)|dt

≤
1∫

0

|fn(t)− f(t)|dt = ‖fn − f‖1 → 0.

Hence f(t) = 0 for all 0 ≤ t ≤ α, all 0 ≤ α < 1
2

f(t) = 0 for all0 ≤ t < 1

2
.
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On the other hand

0 ≤
1∫

1
2

|f(t)− 1|dt =

1∫
1
2

|f(t)− fn(t)|dt ≤ ‖f − fn‖1 → 0 as n→∞

Since f is continuous on [0, 1], it follows that f(t) = 1 for 1
2 ≤ t ≤ 1.

So f cannot be continuous at t = 1
2 . A contradiction.

2 Basics of metric spaces

Definition 2.1. Given a set M 6= ∅, a metric (or distance) d on M is a function
d : M ×M → R such that

(a) d(x, y) ≥ 0 ∀x, y ∈M and d(x, y) = 0 ⇐⇒ x = y.

(b) d(x, y) = d(y, x) ∀x, y ∈M (symmetry).

(c) d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈M (triangle inequality).

The pair (M,d) is called a metric space. We often simply write M if it is
clear what d is.
A sequence (xn)n in a metric space (M,d) converges to x ∈M if ∀ε > 0∃Nε ∈
N∀n ≥ Nε : d(x, xn) < ε (or ≤ ε). One writes limxn = x or xn → x.

One always has ∣∣d(x, z)− d(z, y)
∣∣ ≤ d(x, y)

Hint for the proof:

d(x, z) ≤ d(x, y) + d(y, z)

and think and use symmetry.

Example 2.2. • R with d(x, y) = |x− y|;

• Any normed vector space (X, ‖ · ‖) with d(x, y) = ‖x− y‖;

• Eucledian space Rd (or Cd) with d2(x, y) =
( d∑
j=1

|xj−yj |2
) 1

2 or dp(x, y) =

( d∑
j=1

|xj − yj |p
) 1

p , or d∞(x, y) = maxj=1,...d |xj − yj |.

• M 6= ∅, define d : M ×M → R by

d(x, y) :=

{
0, if x = y

1, else

is discrete metric. (M,d) is called discrete metric space.

• M = (0,∞), d(x, y) =
∣∣∣ 1x − 1

y

∣∣∣ is a metric.
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• Paris metric

d(x, y) :=

{
|x− y|, if x = λy for some λ > 0,

|x|+ |y|, else.

• If (M,d) is a metric space, N ⊂M , then (N, d) is a metric space. Exam-
ple: M = R2, N = {x : |x| = 1}.

• M = FN = set of all sequences (an)n, an ∈ F = set of all functions a :
N→ F is a metric space with metric

d(a, b) :=

∞∑
j=1

2−j
|a(j)− b(j)|

1 + |a(j)− b(j)|
.

Proof. d(a, b) ≥ 0, d(a, b) = 0⇒ a = b, d(a, b) = d(b, a) are clear.
Need d(a, b) ≤ d(a, c) + d(c, b) for all sequences a, b, c.
Note: 0 ≤ t 7→ t

1+t is increasing!

d(a, b) =

∞∑
j=1

2−j
|a(j)− b(j)|

1 + |a(j)− b(j)|

≤
∞∑
j=1

2−j
|a(j)− c(j)|+ |c(j)− b(j)|

1 + |a(j)− c(j)|+ |c(j)− b(j)|

≤
∞∑
j=1

2−j

(
|a(j)− c(j)|

1 + |a(j)− c(j)|
+
|c(j)− b(j)|

1 + |c(j)− b(j)|

)
,

since, by the triangle inequality, |a(j)− b(j)| ≤ |a(j)− c(j)|+ |c(j)− b(j)|.
Note: (an)n ⊂ FN, an → a in FN ⇐⇒ ∀j ∈ N : an(j) → a(j) and this
space is complete!

2−j
|an(j)− a(j)|

1 + |an(j)− a(j)|
≤ d(an, a) for fixed j

⇒ |an(j)− a(j)| ≤ 2jd(an, a)︸ ︷︷ ︸
≤ 1

2 for n large enough

(1 + |an(j)− a(j)|)

≤ 2jd(an, a) +
1

2
|an(j)− a(j)| for n large enough

⇒ for n large enough:|an(j)− a(j)| ≤ 2j+1d(an, a)→ 0 as n→∞,

so an → a in FN ⇒ ∀j ∈ N : an(j)→ a(j).
Need ⇐:

d(an, a) =

∞∑
j=1

2−j
|an(j)− a(j)|

1 + |an(j)− a(j)|

≤
L∑
j=1

2−j |an(j)− a(j)|︸ ︷︷ ︸
≤Lmaxj=1,...,L |an(j)−a(j)|

+

∞∑
L+1

2−j︸ ︷︷ ︸
< ε

2 by choosingL large enough
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Definition 2.3. Let (M,d) be a metric space.

• The open ball at x with radius r > 0: Br(x) := {y ∈M : d(x, y) < r}.

• A ⊂M is open if ∀x ∈ A ∃r > 0 with Br(x) ⊂ A.

Note: Every open ball is itself an open set! Indeed, y ∈ Br(x), r1 := r−d(x, y)⇒
Br1(x) ⊂ Br(x) since, if z ∈ Br1(y) then

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + r1 = r

so z ∈ Br(x).

Theorem 2.4. (a) M and ∅ are open.

(b) An arbitrary union of open sets is open.

(c) Finite intersections of open sets are open.

Proof. (a) Clear.

(b) Take (Aj)j∈J , Aj ⊂M open.

x ∈
⋃
j∈J

Aj = {y ∈M : ∃j ∈ J with y ∈ Aj} ⇒ ∃j ∈ J : x ∈ Aj .

Since Aj is open, there exists r > 0 with Br(x) ⊂ Aj ⊂
⋃
j∈J Aj . Hence⋃

j∈J Aj is open.

(c) Take {A1, . . . An} open sets in M

x ∈ A :=

n⋂
j=1

Aj = {y ∈M : y ∈ Aj for all j = 1, . . . n}

Aj open⇒ ∃rj > 0 : Brj (x) ⊂ Aj , j = 1, . . . n. Let r := min(r1, r2, . . . , rn) >
0. Then

Br(x) ⊂ Brj (x) ⊂ Aj for all j = 1, . . . n

⇒ Br(x) ⊂
n⋂
j=1

Aj

Definition 2.5. (a) x ∈ A is called an interior point of A if ∃r > 0 : Br(x) ⊂
A. The set of all interior points is denoted by Ao.
Note:

• Ao is the largest open subset of M contained in A.

• A is open ⇐⇒ A = Ao.

(b) A ⊂ M is closed if its complement Ac := M \ A = {x ∈ M : x /∈ A} is
open;
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Theorem 2.6. (a) M and ∅ are closed.

(b) Arbitrary intersections of closed sets are closed.

(c) Finite unions of closed sets are closed.

Proof. (a) M c = ∅, ∅c = M are open.

(b) (Aj)j∈J family of closed sets. By Theorem 2.4 and de Morgan’s law( ⋂
j∈J

Aj

)c
=
⋃
j∈J

Acj is open,

so
⋂
j∈J Aj is closed;

(c) Combine
(⋃n

j=1Aj

)c
=
⋂n
j=1A

c
j with (c) of Theorem 2.4.

Definition 2.7. A point x ∈ M is called closure point of A ⊂ M if ∀r > 0 :
Br(x)∩A 6= ∅. The set of all closure points of A is denoted by A and it is called
the closure of A.
Clearly A ⊂ A.

Theorem 2.8. Let (M,d) be a metric space, A ⊂ M . Then A is the smallest
closed set that contains A.

Remark 2.9. Let FA := {B ⊂M : B is closed and A ⊂ B}. Then the smallest
closed subset of M that contains A is, of course, given by

⋂
B∈FA

B. (think about
this!)

Proof of Theorem 2.8. Let A ⊂M .
Step 1: A is closed. Indeed, if x ∈ (A)c, then ∃r > 0 with Br(x) ∩ A = ∅. We

want to show that Br(x) ⊂ (A)c, because then (A)c is open, hence A is closed.
Let y ∈ Br(x). Since Br(x) is open, there exists δ > 0 with Bδ(y) ⊂ Br(x)

⇒ Bδ(y) ∩A ⊂ Br(x) ∩A = ∅

⇒ y /∈ A and since y ∈ Br(x) was arbitrary, this shows

Br(x) ∩A = ∅

so Br(x) ⊂ (A)c, hence (A)c is open.
Step 2: Let B ⊂ M be closed with A ⊂ B. We show A ⊂ B. Indeed, take
x ∈ Bc. SinceBc is open, there exists r > 0 withBr(x) ⊂ Bc, i.e., Br(x)∩B = ∅.
In particular, Br(x) ∩A ⊂ Br(x) ∩B = ∅. So no point in Bc is a closure point
of A ⇒ A ⊂ (Bc)c = B.

Corollary 2.10. A ⊂M is closed ⇒ A = A.

Proof. Have a close look at Theorem 2.8.
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Remark 2.11. • For a ∈M and r > 0 call

Br(a) := {x ∈M : d(x, a) ≤ r}

the closed ball at a with radius r. This is always a closed set. Indeed,
assume x /∈ Br(a), i.e., d(x, a) > r and set r1 := d(x, a) − r > 0. If
y ∈ Br1(x), then

d(a, x) ≤ d(a, y) + d(y, x)

⇔ d(a, y) ≥ d(a, x)− d(y, x) > d(a, x)− r1 = r,

i.e., y /∈ Br(a), hence Br1(x) ⊂ (Br(a))c so (Br(a))c is open ⇔ Br(a) is
closed.

• One always has Br(a) ⊂ Br(a). In a discrete metric space the above
inclusion can be strict! But, e.g., in Rd with the distance dp, 1 ≤ p ≤ ∞,

one always has Br(a) = Br(a). (think about this!)

Lemma 2.12. If (M,d) is a metric space, then Ao = (Ac)c.

Proof.

x ∈ Ao ⇔ ∃r > 0 : Br(x) ⊂ A
⇔ Br(x) ∩Ac = ∅
⇔ x /∈ Ac

⇔ x ∈ (Ac)c.

Definition 2.13. Let (M,d) be a metric space, A ⊂ M . A point x ∈ M is an
accumulation point of A if

∀r > 0 Br(x) ∩ (A \ {x}) 6= ∅,

i.e., every open ball around x contains an element of A different from x.

Note:

• It can be that x /∈ A!

• Every accumulation point is a closure point of A.

• If one denotes the set of all accumulation points of A by A′, then one has
A = A ∪A′ (why?).

Theorem 2.14. Let A ⊂M , (M,d) a metric space. Then x ∈M belongs to A
if and only if (iff) there is a sequence (xn)n ⊂ A with limxn = x. Moreover, if
x is an accumulation point of A, then there exists a sequence (xn)n ⊂ A with
x 6= xn 6= xm, n 6= m, i.e., all terms are distinct.



14 CHAPTER I. NVS, BS AND MS

Proof. Let x ∈ A. Given n ∈ N pick xn with xn ∈ Br(x)∩A( 6= ∅ since x ∈ A!).
Then xn ∈ A and limxn = x.
Conversely, if xn ∈ A and limxn = x, then given r > 0 there exists k ∈ N such
that d(x, xn) < r for all n ≥ k. Therefore Br(x) ∩A 6= ∅ for all r > 0 ⇒ x ∈ A.
If x is an accumulation point of A, choose x1 ∈ A, x1 6= x and d(x, x1) < 1.
Then, inductively, if x1, . . . xn ∈ A \ {x} pich xn+1 ∈ A \ {x} with

d(x, xn+1) < min
( 1

n+ 1
, d(x, xn)

)
.

Thus (xn)n is a sequence in A \ {x}, xn 6= xm if n 6= m and limxn = x.

Definition 2.15. A ⊂M is dense in M if A = M .

Remark 2.16. • By Theorem 2.14, A is dense in M iff ∀x ∈M,∃ sequence (xn)n ⊂
A with limxn = x.

• A is dense in M ⇔ V ∩A 6= ∅ for every nonempty open set V .

Definition 2.17. Let A ⊂ M . x ∈ M is a boundary point of A if ∀r > 0 :
Br(x) ∩A 6= ∅ 6= Br(x) ∩Ac. The set of all boundary points of A is denoted by
∂A and it is called boundary of A.

Note:

• By symmetry, ∂A = ∂(Ac).

• ∂A = A ∩Ac (Why?)

Definition 2.18 (Continuity). Let (M,d), (N, ρ) be two metric spaces. A func-
tion f : M → N is

• continuous at a point a ∈M if ∀ε > 0∃δ = δ(ε) > 0 with ρ
(
f(x), f(a)

)
< ε

for all d(x, a) < δ.

• continuous on M (or simply continuous) if f is continuous at every point
of M .

• sequentially continuous at a point a ∈ M if for every sequence (xn)n ⊂
M,xn → a one has f(xn)→ f(a).

• sequenctially continuous on M (or simply sequentially continuous) if it is
sequentially continuous at every point of M .

• topologically continuous if for every open set O the set f−1(O) ⊂ M is
open.

Theorem 2.19. For a function f : (M,d)→ (N, ρ) between two metric spaces,
the following are equivalent:

(a) f is continuous on M .

(b) f is topologically continuous on M .

(c) f is sequentially continuous on M .

(d) f(A) ⊂ f(A) for every A ⊂M .
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(e) f−1(C) ⊂M is closed for every closed subset C ⊂ N .

Remark 2.20. For a fixed a ∈M , the following are also equaivalent:

(a’) f is continuous at a.

(c’) f is sequentially continuous at a.

(Prove this!)

Proof of Theorem 2.19. (a)⇒ (b): Let O ⊂ N be open and a ∈ f−1(O). Since
f(a) ∈ O and O is open, there exists r > 0 such that Br(f(a)) ⊂ O ⊂ N .
f continuous implies that there exists δ > 0 such that

d(x, a) < δ ⇒ ρ(f(x), f(a)) < r,

i.e., Bδ(a) ⊂ f−1(O) and so f−1(O) is open.
(b)⇒ (c): Let xn → x in M and ε > 0. Let V := Bε(f(x)) ⊂ N , which is

open. Then f−1(V ) is open in M and since x ∈ f−1(V ) there exists δ > 0
such that Bδ(x) ⊂ f−1(V ). Let N ∈ N be such that n ≥ N ⇒ xn ∈ Bδ(x)
(i.e., d(xn, x) < δ for all n ≥ N), Then also xn ∈ f−1(V ), so f(xn) ∈ V , i.e.,
ρ(f(xn), f(x)) < ε for all n ≥ N . Thus f(xn)→ f(x).
(c)⇒ (d): Let A ⊂ M . Assume y ∈ f(Ā). Then there exists x ∈ Ā with

f(x) = y. Since x ∈ A, by Theorem 2.14, it follows that there exists a sequence
(xn)n ⊂ A with xn → x, but then by (c): f(xn) → f(x) in N , i.e., y ∈ f(A).
So f(Ā) ⊂ f(A).
(d)⇒ (e): Let C ⊂ N be closed, so C̄ = C. Let A := f−1(C). Then by (d) we
have

f(A) ⊂ f(A) = C̄ = C,

so Ā ⊂ f−1(C) = A. Since A ⊂ Ā is always true, we must have f−1(C) = A = Ā,
i.e., f−1(C) is closed.
(e)⇒ (a): Let a ∈M and ε > 0. Consider

C := Bε
(
f(a)

)c
= {y ∈ N : ρ(f(a), y) ≥ ε}

which is closed. By (e) f−1(C) ⊂ M is closed, i.e.,
(
f−1(C)

)c
is open. Thus,

since a /∈ f−1(C), i.e., a ∈
(
f−1(C)

)c
, there exists δ > 0 such that Bδ(a) ⊂(

f−1(C)
)c

. But then d(x, a) < δ ⇒ ρ(f(x), f(a)) < ε, i.e., f is continuous.

Remark 2.21. It should be clear that compositions of continuous functions are
continuous.

Definition 2.22. • Two metric spaces (M,d), (N, ρ) are homeomorphic
if ∃ a one-to-one onto function (i.e., bijection) f : (M,d) → (N, ρ) such
that both f and f−1 are continuous;

• Two metrics d and ρ on M are equaivalent if a sequence (xn)n ⊂ M
satisfies

lim d(xn, x) = 0 ⇐⇒ lim ρ(xn, x) = 0,

or equaivalently, if any open set w.r.t. d is open w.r.t. ρ and conversely.



16 CHAPTER I. NVS, BS AND MS

• A metric space M is bounded, if ∃0 < M < ∞ s.t. d(x, y) ≤ M∀x, y ∈
M . The diameter of A ⊂M is

d(A) := sup(d(x, y) : x, y ∈ A).

Note: If d is a metric on M

ρ(x, y) :=
d(x, y)

1 + d(x, y)

is an equaivalent metric on M under which M is bounded!

• A sequence (xn)n in a metric space (M,d) is a Cauchy sequence if
∀ε > 0∃Nε ∈ N : d(xn, xm) < ε for all n,m ≥ Nε.
Note: Every convergent sequence (xn)n is a Cauchy sequence (Why?).
The converse is not true, e.g. take M = (0,∞), d(x, y) = |x − y|. Then
xn = 1

n is Cauchy but not convergent in M .

• A metric space (M,d) is complete (or complete metric space) if every
Cauchy sequence converges (in M).

Example 2.23. • Rd with Eucledean metric or with dp, 1 ≤ p ≤ ∞.

• L∞(S), S 6= ∅, D(f, g) := supx∈S |f(s)− g(s)|.

Theorem 2.24. Let (M,d) be a complete metric space. Then A ⊂M is closed
if and only if (A, d) is a complete metric space (in its own right).

Proof. ¨⇒¨: Let A ⊂ M be closed, (xn)n ⊂ A be Cauchy ⇒ (xn)n is Cauchy
in M . Since M is complete, it follows that x = limn→∞ xn exists in M . Since
A is closed, we conclude that x ∈ A. So (xn)n converges in A and thus (A, d) is
complete.

¨⇐¨: Let (A, d) be complete. Let (xn)n ⊂ A converge to some x ∈ M .
So (xn)n is Cauchy in A, A is complete ⇒ (xn)n converges to some point in
A ⊂M . The limit is unique so x = limn→∞ xn ∈ A. So A is closed.

Lemma 2.25. Let (M,d) be a metric space and (xn)n, (yn)n ⊂ M s.t. xn →
x, yn → y. Then

lim
n→∞

d(xn, yn) = d(x, y).

Proof. By the triangle inequality one has

|d(x, z)− d(z, y)| ≤ d(x, y)

⇒ |d(xn, yn)− d(x, y)| ≤ |d(xn, yn)− d(x, yn)|+ |d(x, yn)− d(x, y)|
≤ d(xn, x) + d(yn, y)→ 0 as n→∞.

Definition 2.26. A function f : (M,d)→ (N, ρ) is called uniformly contin-
uous if ∀ε > 0∃δ > 0 : x, y ∈ M,d(x, y) < δ(or ≤ δ) ⇒ ρ(f(x), f(y)) < ε(or ≤
ε).
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Remark 2.27. • Every uniformly continuous function is continuous.

• M = (0, 1], N = R, d(x, y) = |x − y|, d : (0, 1] → R, x 7→ f(x) = x2 is
uniformly continuous, g : (0, 1] → R, x 7→ g(x) = 1

x is continuous but not
uniformly continuous.

Theorem 2.28. Let A be a subset of a metric space (M,d), (N, ρ) be a complete
metric space. If f : A → N is uniformly continuous, then f has a unique
uniformly continuous extension to the closure A of A.

Remark 2.29. This does not hold if f is only continuous!
Example: 1) f : (0, 1]→ R, x→ 1

x .

2) f : Q→ R, x 7→

{
1, if x2 ≥ 2

−1, if x2 < 2
is a continuous function in Q!

Note that f also is differentiable on Q with zero derivative!
Look at g(x) = x + 4f(x), x ∈ Q ⇒ g′(x) = 1. So g ¨must¨ be increasing! (?).
But

g(−2) = 2,

g(0) = −4.

So g is not increasing!

Proof of Theorem 2.28. Step 1: Uniqueness should be clear (why?).

Step 2: Let x ∈ A. By Theorem 2.14, there exists a sequence (xn)n ⊂ A with
xn → x.
Claim: limn→∞ f(xn) exists in (N, ρ)!
(N, ρ) is complete⇒ we only need to show that (f(xn)) is Cauchy in (N, ρ). Let
ε > 0. Since f is uniformly continuous, ∃δ > 0 : d(x, y) < δ ⇒ ρ(f(x), f(y)) < ε.
So letNε ∈ N be such that d(xn, xm) < δ for all n,m ≥ Nε ⇒ ρ(f(xn), f(xm)) <
ε for all n,m ≥ Nε.
Step 3: The limit limn→∞ f(xn) in Step 2 is independent of the sequence as long
as xn → x. Indeed, let (xn)n, (yn)n ⊂ A, xn → x, yn → x in M . By Step 2 we
know that u = lim f(xn), v = lim f(yn) exist in N . We want to show u = v.
For n ∈ N, let z2n = xn, z2n−1 = yn ⇒ zn → x also, and, by Step 2: lim f(zn)
exists. We have

v = lim f(yn) = lim f(z2n−1) = lim f(zn) = lim f(z2n) = lim f(xn) = u.

Step 4: Define f∗ = lim f(xn), xn ∈ A, xn → x (well defined by Steps 2&3). Of

course f∗(x) = f(x), x ∈ A is an extension of A to A.
Step 5: f∗ : A → N is uniformly continuous. Indeed, given ε > 0, let δ > 0

such that x, y ∈ A, d(x, y) < δ ⇒ ρ(f(x), f(y)) < ε. Now if x, y ∈ A satisfy
d(x, y) < δ, let (xn)n, (yn)n ⊂ A, xn → x, yn → y. By Lemma 2.25

lim d(xn, yn) = d(x, y) < δ ⇒ ∃N0 ∈ N : d(xn, yn) < δ or all n ≥ N0.

Since f is uniformly continuous

ρ(f(xn), f(yn)) < ε

By Lemma 2.25

ρ(f(x), f(y)) = lim ρ(f(x), f(y)) ≤ ε

so f∗ is uniformly continuous.
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Definition 2.30. • A function f : (M,d) → (N, ρ) is an isometry if
ρ(f(x), f(y)) = d(x, y) for all x, y ∈ M . If f is also onto, then (M,d)
and (N, ρ) are isometric.

Note: any isometry is uniformly continuous!

• A complete metric space (N, ρ) is called a completion of a metric space
(M,d) if there exists an isometry f : (M,d) → (N, ρ) such that f(M) =
{y ∈ N : ∃x ∈M : y = f(x)} is dense in N (w.r.t ρ).
If we think of M and f(M) as identical, then M can be considered to be
a subset of N .

Remark 2.31. Any two completions of a metric space (M,d) must be isometric.

Proof. Indeed, if N1, N2 are completions of M :

N2 ⊃ dense g(M)
g←−M f−→ f(M) dense ⊂ N1

f, g are isometries. Define h := g ◦ f−1 : f(M) → f(M). h is also an isometry
(so, it is uniformly continuous). f(M) is dense in N1, N2 is complete, so by
Theorem 2.23 h has a unique uniformly continuous extension h̃ : N1 → N2.
Note: h̃ is an isometry from N1 onto N2! (Why?) (use that g(M) is dense in
N2).

Our approach to completeness: Given a metric space (M,d), find a complete
metric space (N, ρ) and an isometry f : (M,d)→ (N, ρ). f(M) is then isometric
to M . Take the closure f(M) in N . Then (f(M), ρ) ⊂ (N, ρ) is a completion
of (M,d)!

Theorem 2.32. Every metric space (M,d) has a unique (up to isometries)
completion.

Proof. Goal: Embedd M in a complete metric space and take the closure!
We will use (L∞(M), D), the bounded real-valued functions on M with

D(f, g) := sup
x∈M
|f(x)− g(x)|.

Fix a ∈M . For x ∈M let

fx :

{
M → R,
y 7→ fx(y) := d(x, y)− d(y, a).

By the reverse triangle inequality:

|fx(y)| = |d(x, y)− d(y, a)| ≤ d(x, a)

So fx ∈ L∞(M). Hence there exists a unique

f :

{
M → L∞(M),

x 7→ fx.

Claim: f is an isometry!
Indeed, for x, y, z ∈M :

|fx(y)− fz(y)| = |d(x, y)− d(y, a)− (d(z, y)− d(y, a))|
= |d(x, y)− d(z, y)| ≤ d(x, z).
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⇒ D(fx, fy) = sup
y∈M
|fx(y)− fz(y)| ≤ d(x, z).

Choose y = z:

|fx(z)− fz(z)| = |d(x, z)− d(z, z)| = d(x, z),

so

D(fx, fz) = d(x, z).

Since (L∞(M), D) is a complete metric space ⇒ (f(M), D) is a completion of
(M,d).

3 Compactness in metric space

In the following let (M,d) be a metric space.

Definition 3.1 (Totally bounded set). A subset A ⊂ M is totally bounded if
∀ε > 0 ∃n ∈ N : x1, . . . , xn ∈M with A ⊂

⋃n
i=1Bε(xi) (so each x ∈ A is within

ε-distance from some xi).

Remark 3.2. (a) Every x ∈ A can be approximated up to error ε by one of the
xi.

(b) In a finite dimensional (vector) space totally bounded is equivalent to bounded.
In general totally bounded ⇒ bounded, but the converse in wrong!

(c) In Definition 3.1 we could easily insist that each ε-ball is centered at some
point in A. Indeed, let ε > 0, choose x1, . . . , xn ∈M .

A ⊂
n⋃
i=1

B ε
2
(xi).

W.l.o.g., we may assume that B ε
2
(xi) ∩ A 6= ∅. Then choose any yi ∈ A ∩

B ε
2
(xi). By the triangle inequality: B ε

2
(xi) ⊂ Bε(yi)⇒ A ⊂

⋃n
i=1Bε(yi).

Lemma 3.3. A ⊂M is totally bounded ⇔ ∀ε > 0 there exist finitely many sets
A1, . . . An with diam(Ai) < ε for all i = 1, . . . n and A ⊂

⋃n
i=1Ai.

Proof. ¨⇒¨: Let A be totally bounded. Given ε > 0 choose x1, . . . xn ∈M with
A ⊂

⋃n
i=1Bε(xi). Let Ai := A∩Bε(xi) to see that

⋃n
i=1Ai =

⋃n
i=1A∩Bε(xi) =

A ∩ (
⋃n
i=1Bε(xi) = A and note that diam(Ai) < 2ε.

¨⇐¨: Given ε > 0 assume that there are finitely many Ai ⊂ A, i = 1, . . . , n,
diam(Ai) < ε,A ⊂

⋃n
i=1Ai. Then choose any xi ∈ Ai ⇒ Ai ⊂ B2ε(xi)(∀i =

1 . . . n)⇒ A ⊂
⋃n
i=1B2ε(xi).

Remark 3.4. In Lemma 3.3 we insisted on Ai ⊂ A(∀i = 1 . . . n). This is not
a real constraint. If A is covered by B1, . . . , Bn ⊂ M , diam(Bi) < ε. Then A
is also covered by Ai = A ∩Bi ⊂ A and diam(Ai) ≤ diam(Bi) < ε.

There is also a sequential criterion for total boundedness. The Key observa-
tion is
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Lemma 3.5. Let (xn)n ⊂M,A = {xn : n ∈ N}. Then

(a) If (xn)n is Cauchy, then A is totally bounded.

(b) If A is totally bounded, then (xn)n has a Cauchy subsequence.

Proof. (a) Let ε > 0. Since (xn)n is Cauchy, there exists N ∈ N with

d(xn, xm) <
ε

2
for all n,m ≥ N

⇒ sup
n,m≥N

d(xn, xm) ≤ ε

2
< ε

⇒ diam{xn : n ≥ N} = sup
n,m≥N

d(xn, xm) < ε

⇒ {xn : n ≥ N} ⊂ Bε(xN ).

(b) If A is finite, we are done because by pidgeonholing, there must be a point
in A which the sequence (xn)n hits infinitely often. Thus (xn)n even has a
constant subsequence in this case.
So assume that A is an infinite totally bounded set. Then A can be covered
by finitely many sets of diameter < 1. At least one of them must contain
infinitely many points of A. Call this set A1. Note that A1 is totally
bounded, so it can itself be covered by finitely many sets of diameter < 1

2 .
One of these, call it A2, contains infinitely many points of A1. Continuing
inductively we find a decreasing sequence of sets A ⊃ A1 ⊃ A2 ⊃ · · · ⊃
An ⊃ An+1 ⊃ . . . where each Ak contains infinitely many xn and where
diam(Ak) < 1

k .
Now choose a subsequence (xnk

)k, xnk
∈ Ak, k ∈ N. This subsequence is

Cauchy, since

sup(d(xnl
, xnm

)l,m ≥ k) ≤ diam(Ak) <
1

k
.

Theorem 3.6 (Sequential characterization of total boundedness). A set A ⊂M
is totally bounded ⇐⇒ every sequence in A has a Cauchy subsequence.

Proof. “⇒”: Clear by Lemma 3.5.
“⇐”: Assume A is not totally bounded. So for some ε > 0, A cannot be
covered by finitely many ε-balls. By induction, there is a sequence (xn)n ⊂ A
with d(xn, xm) ≥ ε for all n 6= m (Why?). But this sequence has no Cauchy
subsequence!

Corollary 3.7 (Bolzano-Weierstraß). Every bounded infinite subset of Rd has
an accumulation point.

Proof. Let A ⊂ Rd be bounded and infinite. Then there is a sequence (xn)n
of distinct points in A. Since A is totally bounded (Rd has dimension d < ∞)
there is a Cauchy subsequence of (xn)n, but Rd is complete, so (xn)n converges
to some x ∈ Rd. This x is an accumulation point of A.
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Now we come to compactness.

Definition 3.8. • A metric space (M,d) is compact if it is complete and
totally bounded.

• A subset A ⊂M is compact, if (A, d) is a compact metric space.

Example 3.9. (a) K ⊂ Rd is compact ⇐⇒ K is closed and bounded.

(b) Let l∞ = set of all bounded sequences and let

en := δn, δn(j) :=

{
1, if j = n,

0, else.

Then the set A := {en|n ∈ N} is closed and bounded, but not totally bounded,
since

d(en, em) = sup
j∈N
|en(j)− em(j)| = 1, if n 6= m,

hence, A cannot be covered by finitely many ε = 1
2 -balls! (Why?)

(c) A subset of a discrete metric space is compact ⇐⇒ A is finite. (Why?)

The sequential characterization of compactness is given by

Theorem 3.10. (M,d) is compact ⇐⇒ every sequence in M has a convergent
subsequence in M .

Proof. By Lemma 3.5 and the definition of completenes: totally bounded
+

complete

 ⇐⇒


every sequence in M
has a Cauchy subsequence

+
Cauchy sequences converge


Compactness is an extremely useful property to have: if you happen to

have a sequence in a compact space which does not converge, simply extract a
convergent subsequence and use this one instead!

Corollary 3.11. Let A be a subset of a metric space M . If A is compact, then
A is closed in M (and totally bounded). If M is compact and A is closed, then
A is compact.

Proof. Assume that A is compact and let x ∈ M and (xn)n ⊂ A with xn → x.
By Theorem 3.10, (xn)n has a convergent subsequence whose limit is also in
A⇒ x ∈ A so A is closed.
Assume M is compact, A ⊂ M is closed. Given (xn)n ⊂ A, Theorem 3.10
supplies a convergent subsequence of (xn)n which converges to a point x ∈
M . Since A is closed, we must have x ∈ A, so by Theorem 3.10 again, A is
compact.
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Corollary 3.12. Let (M,d) be compact and f : M → R continuous. Then f
attains its maximum and minimum, i.e., there are xmin, xmax ∈M such that

f(xmin) = inf(f(x)|x ∈M),

f(xmax) = sup(f(x)|x ∈M),

In particular, inf and sup are finite!

Proof. Only for mininmum (otherwise look at −f).
Let a := inf(f(x)|x ∈ M). Note that there is always a minimizing sequence,
i.e., a sequence (xn)n ⊂M such that

f(xn)→ a as n→∞.

Now if (xn)n converges to some point x ∈ M , then we are done, since by
continuity of f ,

f(x) = lim
n→∞

f(xn) = a = inf(f(x)|x ∈M).

If (xn)n does not converge, use the fact that M is compact, so by Theorem 3.10
(xn)n has a convergent subsequence and then use this subsequence instead!

Corollary 3.13. Let (N, ρ) be a metric space. If (M,d) is compact and f :
(M,d)→ (N, ρ) is continuous, then f is uniformly continuous.

Proof. Recall the definition of uniform continuity:

∀ε > 0∃δ > 0 : x, y ∈M,d(x, y) < δ ⇒ ρ(f(x), f(y)) < ε.

So assume that f is not uniformly continuous. Then by negating the above one
sees

∃ε > 0 : ∀δ > 0∃x, y ∈M,d(x, y) < δ and ρ(f(x), f(y)) ≥ ε.

Now fix this ε > 0 and let δ = 1
n . Then there must exist xn, yn ∈M,d(xn, yn) <

1
n and ρ(f(xn), f(yn)) ≥ ε. Since (yn)n ⊂ M and M is compact, there exists
a subsequence (ynl

)l of (yn)n which converges to some point y. Look at (xnl
)l.

Again by compactness, there exists a subsequence (xnlk
)k which converges to

some point x. Since xnlk
→ x and ynlk

→ y we have

d(x, y) = lim
k→∞

d(xnlk
, ynlk

) = 0,

i,e, x = y.
But since ρ(f(xn), f(yn)) ≥ ε > 0, we have

lim
k→∞

f(xnlk
) 6= lim

k→∞
f(ynlk

)

so f is not continuous at x.
Thus f not uniformly continuous ⇒ f not continuous ⇐⇒ f continuous ⇒ f
uniformly continuous.
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4 The sequence spaces lp(N), 1 ≤ p ≤ ∞
Definition 4.1. • l∞(N) is the space of all bounded sequences x : N → F

equipped with the norm

‖x‖∞ := sup
n∈N
|xn|.

• Let 1 ≤ p < ∞. lp(N) is the space of all sequences x : N → F for which∑
n∈N
|xn|p <∞. With

‖x‖p :=
(∑
n∈N
|xn|p

) 1
p

it becomes a normed vector space.

Lemma 4.2. Let 1 ≤ p ≤ ∞. Then (lp(N), ‖ · ‖p) is a normed vector space.

Proof. Case 1: p =∞ should be immediate.
Case 2: 1 ≤ p < ∞ is more complicated. It is not even obvious why (lp, ‖ · ‖p)
is a vector space. If x ∈ lp and α ∈ F, then αx ∈ lp is clear, but if x, y ∈ lp(N)
why is x+ y ∈ lp(N)?
Let x, y ∈ lp(N), i.e., ‖x‖p, ‖y‖p <∞. Then

∞∑
n=1

|xn + yn|p ≤
∞∑
n=1

(2 max(|xn|, |yn|))p

= 2p
∞∑
n=1

max(|xn|, |yn|) ≤ 2p(

∞∑
n=1

|xn|p +

∞∑
n=1

|yn|p) <∞

so x+ y ∈ lp(N).
To show that ‖ · ‖p is a norm, we only have to check the triangle-inequality and
for this we need some more help.

Lemma 4.3 (Hölder inequality). Let 1 ≤ p ≤ ∞ and define the dual exponent
q ∈ [1,∞] by

q =


∞, if p = 1,

1, if p =∞,
p
p−1 ( i.e., q is such that 1

p + 1
q = 1), if 1 < p <∞.

Then if x ∈ lp(N), y ∈ lq(N) and if x− y is defined by (x · y)n := xn · yn, n ∈ N,
then x · y ∈ l1(N) and

‖x · y‖1 ≤ ‖x‖p‖y‖q.

Armed with this, we can show that ‖ · ‖p is a norm for 1 ≤ p ≤ ∞.
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Let x, y ∈ lp(N), then

‖x+ y‖pp =

∞∑
n=1

|xn + yn|p ≤
∞∑
n=1

(|xn|+ |yn|)p

=

∞∑
n=1

(|xn|+ |yn|)(|xn|+ |yn|)p−1

=

∞∑
n=1

|xn|(|xn|+ |yn|)p−1 +

∞∑
n=1

|yn|(|xn|+ |yn|)p−1 =: (?)

We know already that x + y ∈ lp. Let q be the dual exponent to p. Then
p
q = p− 1 (with the convention that 1

∞ = 0). So, since (|xn|+ |yn|)n ∈ lp, one
has

(|xn|+ |yn|)p−1 = (|xn|+ |yn|)
p
q ∈ lq.

So the Hölder inequality applies to (?) and

∞∑
n=1

(|xn|+ |yn|)p =

∞∑
n=1

|xn|(|xn|+ |yn|)
p
q +

∞∑
n=1

|yn|(|xn|+ |yn|)
p
q

≤
( ∞∑
n=1

|xn|p
) 1

p
( ∞∑
n=1

(|xn|+ |yn|)
p
q ·q
) 1

q

+
( ∞∑
n=1

|yn|p
) 1

p
( ∞∑
n=1

(|xn|+ |yn|)
p
q ·q
) 1

q

= (‖x‖p + ‖y‖p)
( ∞∑
n=1

(|xn|+ |yn|)p
) 1

q

⇒
( ∞∑
n=1

(|xn|+ |yn|)p
)1− 1

q

︸ ︷︷ ︸( ∞∑
n=1

(|xn|+|yn|)p
) 1

p =‖x+y‖p

≤ ‖x‖p + ‖y‖p.

So ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

It remains to prove Hölder inequality. For this we need

Lemma 4.4 (Young’s inequality). Let 1 < p <∞. Then for all a, b ≥ 0

ab ≤ 1

p
ap +

1

q
bq,

where 1
p + 1

q = 1.

Proof. For some suitable function G, we want to have an inequality of the form

a · b ≤ G(a) + F (b) ∀a, b ≥ 0
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for a suitable function F . How to guess F?
Certainly F given by

F (b) := sup
a>0

(ab−G(a)) (??)

works, since then

G(a) + F (b) ≥ G(a) + ab−G(a) = ab.

So we need to find the supremum in (??). If G(a) = 1
pa

p and 1 < p <∞, then

G(0) = 0 and lima→∞(ab−G(a)) = −∞ so there will be a point a (depending
on b) for which a 7→ ab−G(a) is maximal.
At this point the derivative

d

da
(ab−G(a)) = b−G′(a) = b− ap−1

must be zero ⇒ a = b1/(p−1).

⇒ F (b) = ab− 1

p
ap = a(b− 1

p
ap−1)

= b
1

p−1 (b− 1

p
b) = b

p
p−1

p

p− 1
=

1

q
bq

with q = p
p−1 .

Proof of Lemma 4.3. Let (xn)n ∈ lp and (yn)n ∈ lq, 1 ≤ p ≤ ∞, q dual exponent
of p.
The cases p = 1 or p =∞ are easy (do them!).
So let 1 < p <∞.
Step 1: Assume ‖x‖p = 1 = ‖y‖q. Then

‖x · y‖1 ≤ 1.

Indeed,

‖x · y‖1 ≤
∞∑
n=1

|xnyn| =
∞∑
n=1

|xn||yn|

and by Lemma 4.4

≤
∞∑
n=1

(1

p
|xn|p +

1

q
|yn|q

)
=

1

p
‖x‖pp +

1

q
‖y‖qq

=
1

p
+

1

q
= 1.

Step 2: Assume x 6= 0, y 6= 0. Then

‖x · y‖1
‖x‖p‖y‖q

= ‖ x

‖x‖p
· y

‖y‖q
‖1 = ‖x̃ · ỹ‖1
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with x̃ =
(
xn

‖x‖p

)
n
, ỹ =

(
yn
‖y‖q

)
n
.

Note ‖x̃‖p = 1 = ‖ỹ‖q. So by Step 1

‖x̃ · ỹ‖1 ≤ 1,

hence

‖x · y‖1 = ‖x‖p‖y‖q‖x̃ · ỹ‖1 ≤ ‖x‖p‖y‖q.

Theorem 4.5. The spaces (lp(N), ‖ · ‖p) are Banach spaces, i.e., they are com-
plete.

Proof. Only completeness remains: we do only 1 ≤ p <∞.
We write x = (x(j))j∈N ∈ lp(N).
So let (xn)n ⊂ lp(N) be Cauchy.
Step 1: A candidate for the limit: Fix j ∈ N and consider

|xn(j)− xm(j)| ≤
( ∞∑
l=1

|xn(l)− xm(l)|p
) 1

p

= ‖xn − xm‖p

⇒ (xn(j))n ⊂ F is Cauchy. By completeness of F x(j) := limn→∞ xn(j) exists.
Step 2: x ∈ lp(N)!
Idea:

‖x‖pp =

∞∑
j=1

|x(j)|p =

∞∑
j=1

lim
n→∞

|xn(j)|p“ = “ lim
n→∞

∞∑
j=1

|xn(j)|p︸ ︷︷ ︸
‖xn‖pp

<∞.

Let L ∈ N. Note that

L∑
j=1

|x(j)|p =

L∑
j=1

lim
n→∞

|xn(j)|p

= lim inf
n→∞

L∑
j=1

|xn(j)|p

≤ lim inf
n→∞

‖xn‖pp <∞

Thus, using the monotone convergence theorem, we conclude that

∞∑
j=1

|x(j)|p = lim
L→∞

L∑
j=1

|x(j)|p ≤ (lim inf ‖xn‖p)p

⇒ ‖x‖p ≤ lim inf ‖xn‖p,

so x ∈ lp!
Step 3: xn → x in lp: Given ε > 0, there exists

N ∈ N : ‖xn − xm‖p < ε ∀n,m ≥ N.
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Let L ∈ N.

L∑
j=1

|x(j)− xn(j)|p = lim
m→∞

L∑
j=1

|xm(j)− xn(j)|p

≤ lim sup
m→∞

‖xm − xn‖pp

≤ εp for n large enough

⇒ for n ≥ N :

‖x− xn‖pp = lim
L→∞

L∑
j=1

|x(j)− xn(j)|p ≤ εp

or ‖x− xn‖p ≤ ε for all n large enough!

5 Hahn-Banach type theorems

5.1 Some preparations

Definition 5.1. Let (X, ‖·‖X), (Y, ‖·‖Y ) be normed vector spaces. A continuous
linear map T : X → Y is called operator. If Y = R or C we call them
functionals.

Lemma 5.2. Let X,Y be normed vector spaces and T : X → Y linear. Then
the following are equivalent (t.f.a.e.):

(a) T is continuous.

(b) T is continuous at 0.

(c) ∃M ≥ 0 : ‖Tx‖Y ≤M‖x‖X∀x ∈ X.

(d) T is uniformly continuous.

Proof. (c)⇒ (d)⇒ (a)⇒ (b) is easy.
E.g.: (c) ⇒ T is Lipschitz continuous, since

‖Tx− Tx0‖Y = ‖T (x− x0)‖Y ≤M‖x− x0‖X .

So we only need to show (b)⇒ (c). Assume that (c) is wrong ⇒ ∀n ∈ N∃xn ∈
X : ‖Txn‖Y > n‖xn‖X ⇒ xn 6= 0. Then

yn :=
xn

n‖xn‖X
→ 0 in X.

But

‖Tyn‖Y =
‖Txn‖X
n‖xn‖X

> 1

so Tyn 9 0, so T is not continuous at 0, a contradiction.
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Definition 5.3 (Operator-norm). Given T : X → Y linear

‖T‖ := ‖T‖X→Y := inf(M ≥ 0|‖Tx‖Y ≤M‖x‖X for all x ∈ X)

defines the operator-norm of T .

Note:

‖T‖ = sup
x6=0

‖Tx‖Y
‖x‖X

= sup
‖x‖X=1

‖Tx‖Y = sup
‖x‖X≤1

‖Tx‖Y .

and

‖Tx‖Y ≤ ‖T‖‖x‖ ∀x ∈ X. (I.1)

Indeed, let M0 := supx 6=0
‖Tx‖Y
‖x‖X

‖Tx‖Y =
‖Tx‖Y
‖x‖X

‖x‖X ≤M0‖x‖X

⇒ ‖T‖ ≤M0.

On the other hand: given ε > 0∃xε 6= 0 :

‖Txε‖Y ≥M0(1− ε)‖xε‖X

⇒ ‖T‖ ≥M0(1− ε) ∀ε < 0

⇒ ‖T‖ ≥M0

and thus ‖T‖ = M0, so (I.1) holds.

Definition 5.4. Let X,Y be normed spaces.

L(X,Y ) := {T : X → Y |T is linear and continuous}

is again a vector space.

(S + T )(x) := Sx+ Tx,

(λT )(x) := λTx.

Proposition 5.5. (a) ‖T‖ = sup‖x‖X≤1 ‖Tx‖Y defines a norm on L(X,Y ).

(b) If Y is complete, then L(X,Y ) is also complete.

Proof. (a) Looking closely reveals

‖λT‖ = |λ|‖T‖

‖T‖ = 0⇒ T = 0 (the zero linear map).

Triangle-inequality:

‖S + T‖ = sup
‖x‖X≤1

‖(S + T )x‖Y︸ ︷︷ ︸
=‖Sx+Tx‖Y

≤ sup
‖x‖X≤1

‖Sx‖Y + sup
‖x‖X≤1

‖Tx‖Y

= ‖S‖+ ‖T‖.
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(b) Let (Tn)n ⊂ L(X,Y ) be Cauchy ⇒ for fixed x ∈ X (Tnx)n is Cauchy in Y !

‖Tnx− Tmx‖Y = ‖(Tn − Tm)x‖Y ≤ ‖Tn − Tm‖‖x‖X .

By completeness of Y ⇒ Tx := limn→∞ Tnx exists.
Step 1: T is linear. Indeed

T (λx1 + µx2) = lim
n→∞

Tn(λx1 + µx2)︸ ︷︷ ︸
λTnx1+µTnx2

= λ lim
n→∞

Tnx1 + µ lim
n→∞

Tnx2

= λTx1 + µTx2.

Step 2: T ∈ L(X,Y ), i.e., ‖T‖ <∞ and ‖T − Tn‖ → 0.
Indeed, let ε > 0 and choose N1 ∈ N so that

‖Tn − Tm‖ < ε ∀n,m ≥ N1.

Let x ∈ X, ‖x‖X ≤ 1. Choose Nε := Nε(ε, x) ≥ N1 so that

‖TNεx− Tx‖Y ≤ ε

Thus, for every x ∈ X with ‖x‖X ≤ 1:

‖Tnx− Tx‖Y ≤ ‖Tnx− TNε
x‖Y︸ ︷︷ ︸

=‖(Tn−TNε )x‖Y ≤‖Tn−TNε‖‖x‖X≤‖Tn−TNε‖

+ ‖TNε
x− Tx‖Y︸ ︷︷ ︸
≤ε

≤ ‖Tn − TNε‖︸ ︷︷ ︸
≤ε,n≥N1

+ε

≤ 2ε for all n ≥ N1

‖Tx‖Y ≤ ‖Tnx− Tx‖Y + ‖Tnx‖Y ≤ 2ε+ ‖Tn‖ <∞
‖T − Tn‖ = sup

‖x‖X≤1

‖Tx− Tnx‖ ≤ 2ε for all n ≥ N1,

so Tn → T in operator norm.

Definition 5.6. Given a normed vector space X, its dual space is the space
X ′ = X∗ := L(X,F) of continuous linear functionals.

Corollary 5.7. For any normed vector space X, its dual X ′ equipped with the
norm

‖x′‖X′ := sup
‖x‖X≤1

|x′(x)| = sup
‖x‖X=1

|x′(x)|

is a Banach space.
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5.2 The analytic form of Hahn-Banach: extension of lin-
ear functionals

Definition 5.8. Let E be a vector space. A map p : E → R is sub-linear if

(a) p(λx) = λp(x),∀λ ≥ 0,∀x ∈ E.

(b) p(x+ y) ≤ p(x) + p(y),∀x, y ∈ E.

Example 5.9. (i) Every semi-norm is sub-linear.

(ii) Every linear functional on a real vector space is sub-linear.

(iii) On l∞(N,R) = bounded real-valued sequences, t = (tn)n 7→ lim supn→∞ tn
is sub-linear.
On l∞(N,C), t = (tn)n 7→ lim supn→∞Re(tn) is sub-linear.

(iv) A sub-linear map is often called Minkowski functional.

Theorem 5.10 (Hahn-Banach, analytic form). Let E be a real vector space,
p : E → R sub-linear, G ⊂ E a subspace, and g : G → R a linear functional
with

g(x) ≤ p(x) ∀x ∈ G.

Then there exists a linear functional f : E → R which extends g, i.e., g(x) =
f(x) ∀x ∈ G, such that

f(x) ≤ p(x) ∀x ∈ E.

For the proof we need Zorn’s lemma, which is an important property of
ordered sets.

Some notations:

• Let P be a set with a partial order relation ≤. A subset Q ⊂ P is totally
ordered if for any a, b ∈ Q either a ≤ b or b ≤ a (or both!) holds.

• Let Q ⊂ P , then c ∈ P is an upper bound for Q if a ≤ c for all a ∈ Q.

• We say that m ∈ P is a maximal element of P if there is no element
x ∈ P such that m ≤ x except for x = m.
Note that a maximal element of P need not be an upper bound for P !

• We say that P is inductive if every totally ordered subset Q ⊂ P has an
upper bound.

Lemma 5.11 (Zorn). Every non-empty ordered set which is inductive has a
maximal element.

Proof of Theorem 5.10. We say that h extends g if

D(h) ⊃ D(g) and h(x) = g(x) ∀x ∈ D(g).

Consider the set

P =

 h : E ⊃ D(h)→ R| D(h) is a linear subspace of E,
h is linear, G ⊂ D(h), h extends g,

h(x) ≤ p(x) ∀x ∈ D(h)

 .
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Note: P 6= ∅ since g ∈ P !
On P we define the order h1 ≤ h2 ⇐⇒ h2 extends h1.
Step 1: P is inductive.
Indeed, let Q ⊂ P be totally ordered. Write Q = (hi)i∈I and set

D(h) :=
⋃
i∈I

D(hi), h(x) := hi(x) if x ∈ D(hi) for some i ∈ I.

It is easy to see that this definition is consistent and that h is an upper bound
for Q.
Step 2: By Step 1 and Zorn’s lemma, P has a maximal element f ∈ P .
Claim: D(f) = E (which finishes the proof).
Assume that D(f) 6= E. Let x0 /∈ D(f) and set D(h) := D(f) + Rx0 and for
x ∈ D(f) set

h(x+ tx0) := f(x) + tα, t ∈ R,

where we will choose α so that h ∈ P . For this we need

f(x) + tα ≤ p(x+ tx0). (I.2)

Let t > 0. Then

(I.2) ⇐⇒ tα ≤ p(x+ tx0)− f(x)

⇐⇒ α ≤ 1

t
p(x+ tx0)− 1

t
f(x)

= p(
x

t
+ x0)− f(

x

t
)

= p(u+ x0)− f(u),

where u := x
t .

If t < 0, then

(I.2) ⇐⇒ tα ≤ p(x+ tx0)− f(x)

⇐⇒ −α ≤ 1

−t
p(x+ tx0)− 1

−t
f(x)

= p(
x

−t
+ x0)− f(

x

−t
)

= p(w + x0)− f(w)

⇐⇒ α ≥ f(w)− p(w − x0),

where w := x
−t .

Thus (I.2) holds if

f(w)− p(w − x0) ≤ α ≤ p(u+ x0)− f(u) ∀u,w ∈ D(f). (I.3)

Since f ∈ P , we have

f(x) ≤ p(x) ∀x ∈ D(f).

Hence ∀u,w ∈ D(f) it holds

f(u) + f(w) = f(u+ w)

≤ p(u+ w)

= p(u+ x0 + w − x0)

≤ p(u+ x0) + p(w − x0)
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so

f(w)− p(w − x0) ≤ p(u+ x0)− f(u)

and hence (I.3) holds with the choice

α = sup
w∈D(f)

(f(w)− p(w − x0)).

We have shown: If D(f) 6= E, then we can extend f by h, i.e., f ≤ h but this
contradicts that f is a maximal element of P !

To extend Hahn-Banach to complex vector spaces, we need

Lemma 5.12. Let X be a C-vector space.

(a) If l : X → R is R-linear, i.e.,

l(λ1x1 + λ2x2) = λ1l(x1) + λ2l(x2) ∀x1, x2 ∈ X,λ1, λ2 ∈ R

then

l̃(x) := l(x)− il(ix), x ∈ X

defines a C-linear functional l̃ : X → C and l = Re(l̃).

(b) If h : X → C is C-linear, then l = Re(h) is R-linear and if l̃ is as in (a),
then h = l̃.

(c) If p : X → R is a semi-norm and l : X → C is C-linear, then

|l(x)| ≤ p(x) x ∈ X ⇐⇒ |Re(l(x))| ≤ p(x) x ∈ X.

(d) If ‖ · ‖ is a norm on X and l : X → C is C-linear and continuous, then

‖l‖ = ‖Re(l)‖.

Remark 5.13. Thus the map l 7→ Re(l) is a bijective R-linear map between the
space of C-linear and R-linear functionals and if X is a normed vector space, it
is an isometry.

Proof of Lemma 5.12. (a) Let l be R-linear and l̃(x) := l(x) − il(ix). Since
x 7→ ix is R-linear, we have that l̃ is R-linear and, by construction, Re(l̃) = l.
So we only need to check l̃(ix) = il̃(x).

l̃(ix) = l(ix)− il(iix)

= l(ix)− il(−x) = l(ix) + il(x)

= i(l(x)− il(ix)) = il̃(x).

(b) If h is C-linear, then l = Re(h) is R-linear.
Since Imz = −Re(iz) ∀z ∈ C, we have

h(x) = Reh(x) + iImh(x)

= Reh(x)− iRe(ih(x))

= Reh(x)− iRe(h(ix))

= l(x)− il(ix) = l̃(x).
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(c) ∀z ∈ C : |Re(z)| ≤ |z| so ”⇒“ holds.
”⇐“: Let x ∈ X and write l(x) = λ|l(x)| for some λ = λ(x) with |λ| = 1.
Then

|l(x)| = λ−1l(x) = l(λ−1x)

so

|l(x)| = Re|l(x)| = Re l(λ−1x) ≤ |Re l(λ−1x)|
≤ p(λ−1x) = p(x) ∀x ∈ X.

(d) Follows immediately from (c).

Theorem 5.14 (Hahn-Banach, complex form). Let E be a complex vector space,
p : E → R sub-linear, G ⊂ E a subspace, and l : G→ C a linear functional with

Re l(x) ≤ p(x) ∀x ∈ G.

Then there exists a linear functional h : E → C which extends l with

Reh(x) ≤ p(x) ∀x ∈ E.

Proof. Consider G ⊂ E as a real vector space and Re l : G → R as a real
functional. By Theorem 5.10 there exists and extension f : E → R of Re l with
f(x) ≤ p(x) ∀x ∈ E. By Lemma 5.12, the functional

h(x) := f(x)− if(ix)

is C-linear and

Reh(x) = f(x) ≤ p(x) ∀x ∈ E

and h(x) = l(x) ∀x ∈ G.

Corollary 5.15. Let F = R or C. Let X be a normed vector space and U ⊂ X
a linear subspace. Then for every continuous linear functional g : U → F there
exists f ∈ X ′ such that

f |U = g and sup
x∈BX

|f(x)| = ‖f‖ = ‖g‖ = sup
x∈BU

|g(x)|,

where

BU = {x ∈ U |‖x‖ ≤ 1} ⊂ BX = {x ∈ X|‖x‖ ≤ 1}.

Proof. Step 1: Let X be a real normed vector space. Put ‖g‖ := supx∈BU
|g(x)|

and

p(x) := ‖g‖‖x‖.

By Theorem 5.10 there exists f : X → R which extends g and

f(x) ≤ p(x) ∀x ∈ X.
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Since

−f(x) = f(−x) ≤ p(−x) = p(x)

one has |f(x)| ≤ p(x) ∀x ∈ X and so ‖f‖ ≤ ‖g‖.
On the other hand

‖g‖ = sup
x∈BU

|g(x)| = sup
x∈BU

|f(x)| ≤ sup
x∈BX

|f(x)| = ‖f‖.

Step 2: If X is a complex vector space, apply Step 1, now combined with The-
orem 5.14, to get a linear functional f : X → C with

f |U = g and ‖Ref‖ = ‖g‖.

By Lemma 5.12 (d) we get ‖f‖ = ‖Ref‖.

Corollary 5.16. In any normed vector space X to every x0 ∈ X there exists
f0 ∈ X ′, ‖f0‖ = 1, f0(x0) = ‖x0‖. In particular, X ′ separates the points of X:
∀x1, x2 ∈ X,x1 6= x2 ⇒ ∃f ∈ X ′ : f(x1) 6= f(x2).

Proof. By Corollary 5.15 we can extend linear functional g : Fx0 → F, g(λ) =
λ‖x0‖ to X and preserve its norm.
If x1 6= x2, consider x = x1 − x2 6= 0.

Corollary 5.17. Let X be a normed vector space. Then it holds

‖x‖X = sup{|f(x)| |f ∈ X ′, ‖f‖X′ ≤ 1}︸ ︷︷ ︸
=:a

∀x ∈ X. (I.4)

Proof. By definition of ‖f‖X′

|f(x)| ≤ ‖f‖X′‖x‖X ≤ ‖x‖X ⇒ a ≤ ‖x‖X .

By Corollary 5.16, there exists f0 ∈ X ′ such that ‖f0‖X′ = 1 and f0(x) = ‖x‖
⇒ a ≤ ‖x‖.

Remark 5.18. Note the symmetry of (I.4) with

‖f‖X′ = sup{|f(x)| | ‖x‖X ≤ 1}.

5.3 Geometric form of Hahn-Banach

In the following, let E be a normed vector space.

Definition 5.19. An affine hyperplane is a subset H ⊂ E of the form

H = {x ∈ E|Ref(x) = α}

where f is a linear functional on E which is not identically zero, α ∈ R.

H = [Ref = α], or Ref = α

is the equation of H.
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Proposition 5.20. The hyperplane H = [Ref = α] is closed ⇐⇒ f is
continuous.

Proof. ¨⇐¨: clear.
¨⇒¨: H is closed ⇒ Hc is open. Pick x0 ∈ Hc with Ref(x0) < α. Thus
∃r > 0 : Br(x0) ⊂ Hc.
Claim: Ref(x) < α ∀x ∈ Br(x0).
Assume ∃x1 ∈ Br(x0) : Ref(x1) > α

⇒ [x0, x1] = {xt = (1− t)x0 + tx1|t ∈ [0, 1]} ⊂ Br(x0)

so, since Br(x0) ⊂ Hc ⇒ Ref(xt) 6= α for all t ∈ [0, 1]. But if

t =
Ref(x1)− α

Ref(x1)−Ref(x0)
⇒ Ref(x0) = α,

a contradiction. So Ref(x) < α ∀x ∈ Br(x0).
Let x ∈ E, ‖x‖ ≤ 1. Then

x̃ = x0 + rx ∈ Br(x0) ⇒ Ref(x̃)︸ ︷︷ ︸
=rRef(x)+Ref(x0)

< α

⇒ Ref(x) <
1

r
(α−Ref(x0))

and

Ref(−x) = −Ref(x) >
−1

r
(α−Ref(x0)).

So

|Ref(x)| ≤ 1

r
(α−Ref(x0))

i.e.,

‖f‖ = ‖Ref‖ = sup
‖x‖<1

|Ref(x)| ≤ 1

r
(α−Ref(x0)) <∞

so f is continuous.

Definition 5.21. Let A,B ⊂ E. H = [Ref = α] separates A and B if

Ref(x) ≤ α ∀x ∈ A and Ref(x) ≥ α ∀x ∈ B.

H strictly separates A and B if there exists ε > 0 such that

Ref(x) ≤ α− ε ∀x ∈ A and Ref(x) ≥ α+ ε ∀x ∈ B.

A ⊂ E is convex if ∀x1, x2 ∈ A

[x1, x2] = {(1− t)x1 + tx2|t ∈ [0, 1]} ⊂ A.
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Theorem 5.22 (Hahn-Banach, first geometric form). Let A,B ⊂ E,A,B 6= ∅,
convex, A∩B = ∅ and one of them be open. Then there exists a closed hyperplane
H which separates them.

We need two Lemmata:

Lemma 5.23. Let C ⊂ E be open and convex with 0 ∈ C. For x ∈ E set

p(x) = inf{α > 0|α−1x ∈ C} (gauge, Minkowski functional). (I.5)

Then p is sub-linear and

∃M <∞ : 0 ≤ p(x) ≤M‖x‖ ∀x ∈ E (I.6)

C = {x ∈ E|p(x) < 1}. (I.7)

Proof. Step 1: Clearly p(λx) = λp(x) ∀x ∈ E, λ ≥ 0.
Step 2: ∃r > 0 : Br(0) ⊂ C (C is open). Thus ∀x̃ ∈ Br(0)

p(x̃) ≤ 1

so if x ∈ E \ {0} and 0 < δ < r we have

x̃ = (r − δ) x

‖x‖
∈ Br(0)

⇒ 1 ≥ p(x̃) = p((r − δ) x

‖x‖
) = (r − δ) 1

‖x‖
p(x)

p(x) ≤ ‖x‖
r − δ

p(x̃) ∀x ∈ E

δ → 0⇒ p(x) ≤ 1

r
‖x‖ ∀x ∈ E

so M = 1
r works.

Step 3: C = {x ∈ E|p(x) < 1}.
Indeed, let x ∈ C. C is open ⇒ (1 + ε)x ∈ C for small enough ε

⇒ p(x) ≤ 1

1 + ε
< 1 ∀x ∈ C

⇒ C ⊂ {p < 1}.

Conversely, if p(x) < 1

∃α ∈ (0, 1) :
x

α
∈ C.

0 ∈ C, C convex ⇒ x = α xα + (1− α)0 ∈ C ⇒ x ∈ C.
Step 4: ∀x, y ∈ E : p(x+ y) ≤ p(x) + p(y).
Indeed, let ε > 0, λ = p(x)− ε, µ = p(y) + ε and note

x

λ
∈ C, y

µ
∈ C
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since

p(
x

λ
) =

1

λ
p(x) =

p(x)

p(x) + ε
< 1.

C(convex) 3 λ

λ+ µ

x

λ︸︷︷︸
∈C

+
µ

λ+ µ

y

µ︸︷︷︸
∈C

=
x+ y

λ+ µ
∈ C

⇒ p(
x+ y

λ+ µ
) < 1

⇒ p(x+ y) < λ+ µ = p(x) + p(y) + 2ε ∀ε > 0

⇒ p(x+ y) ≤ p(x) + p(y).

Lemma 5.24. Let C ⊂ E,C 6= ∅, convex, x0 ∈ E \ C. Then there exists
f ∈ E′ : Ref(x) < Ref(x0) ∀x ∈ C.

Proof. Step 1: F = R.
By translation: we may assume 0 ∈ C. Let p be the Minkowski functional for
C, G = Rx0, g : G→ R

g(tx0) := tp(x0) t ∈ R

⇒ g(x) ≤ p(x) ∀x ∈ G.

By Theorem 5.10 ∃ linear functional f on E which extends g and

f(x) ≤ p(x) ∀x ∈ E.

In particular, f(x0) = p(x0) ≥ 1, and by (I.6)

f(x) ≤ p(x) ≤M‖x‖ ∀x ∈ E

|f(x)| ≤M‖x‖ ∀x ∈ E

so f is continuous.

(I.7)⇒ f(x) ≤ p(x) < 1 ∀x ∈ C

⇒ f(x) 6= f(x0) ∀x ∈ C.

Step 2: F = C . Use Step 1 and Lemma 5.12.
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Proof of Theorem 5.22. A,B 6= ∅ convex, A ∩B = ∅, A open.

C := A−B = {x− y|x ∈ A, y ∈ B}

is open (C = ∪y∈B (A− y)︸ ︷︷ ︸
open

) and convex (check this!). 0 /∈ C (A ∩ B = ∅). By

Lemma 5.24 there exists f ∈ E′ with

Ref(z) < 0 ∀z ∈ C
Ref(x− y) < 0 ∀x ∈ A,∀y ∈ B

Ref(x)−Ref(y) < 0 ∀x ∈ A,∀y ∈ B

⇒ Ref(x) < Ref(y) ∀x ∈ A,∀y ∈ B.

Take α = supx∈ARef(x)

⇒ Ref(x) ≤ α ≤ Ref(y) ∀x ∈ A,∀y ∈ B.

Theorem 5.25 (Hahn-Banach, second geometric form). Let A,B ⊂ E,A,B 6=
∅, convex, A∩B = ∅, A closed, B compact. Then there exists a closed hyperplane
that strictly separates A and B.

Proof. C := A − B = {x − y|x ∈ A, y ∈ B} is convex and closed (why?), and
0 /∈ C ⇒ ∃r > 0 : Br(0) ∩ C = ∅. By Theorem 5.22, there exists a closed
hyperplane H which separates C and Br(0). So there exists f ∈ E∗, f 6≡ 0, such
that

Ref(x− y) ≤ Ref(rz) = rRef(z) ∀x ∈ A, y ∈ B, z ∈ B1(0).

Since

inf
z∈B1(0)

Ref(z) = − sup
z∈B1(0)

|Ref(z)| = − sup
z∈B1(0)

|f(z)| = −‖f‖ < 0

⇒ Ref(x)−Ref(y) ≤ −r‖f‖ ∀x ∈ A, y ∈ B

⇔ Ref(x) +
r

2
‖f‖︸ ︷︷ ︸
=:ε

≤ Ref(y)− r

2
‖f‖ ∀x ∈ A, y ∈ B.

Choose α = supx∈ARef(x) + ε

⇒ Ref(x) + ε ≤ α ≤ f(y)− ε ∀x ∈ A, y ∈ B.

So H = [Ref = α] strictly separates A and B.

Remark 5.26. Assuming only that A,B are convex, 6= ∅, A ∩ B = ∅ it is in
general impossible to separate A and B by a closed hyperplane (except when E
is finite-dimensional).
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Corollary 5.27. Let F ⊂ E linear subspace such that F̄ 6= E. Then there
exists f ∈ E∗, f 6≡ 0 such that f(x) = 0 ∀x ∈ F .

Proof. Let x0 ∈ E \ F̄ , so x0 /∈ F̄ . Let A = F̄ , B = x0. By Theorem 5.25 there
exists a closed hyperplane H = [Ref = α] which strictly separates F̄ and {x0}

⇒ Ref(x) < α < Ref(x0) ∀x ∈ F̄ .

Since F is linear: x ∈ F ⇒ λx ∈ F ∀λ ∈ R

⇒ λRef(x) < α < Ref(x0) ∀x ∈ F,∀λ ∈ R

⇒ Ref(x) = 0 ∀x ∈ F (why?)

⇒ 0 = Ref(−ix) = Re(−if(x)) = −Re(if(x)) = Imf(x) ∀x ∈ F

so

f(x) = 0 ∀x ∈ F and Ref(x0) > 0.

Remark 5.28. The main use of Corollary 5.27 is in the reverse direction: If
every continuous linear functional f which vanishes in the subspace F ⊂ E also
vanishes on E, then F is dense in E!

6 The Baire Category theorem and its applica-
tions

6.1 The Baire Category theorem

Recall that E ⊂M is dense in M if Ē = M .

Definition 6.1. Let (M,d) be a metric space.

(a) E ⊂M is nowhere dense if Ē has empty interior, i.e., (Ē)o = int(Ē) = ∅.

(b) F ⊂M is meager (or of 1st category) if it is the countable union of nowh-
were dense sets, i.e., there exists (Fn)n of nowhere dense sets such that
F =

⋃
n∈N Fn.

(c) F is fat (or of 2nd category) if F is not meager.

(d) E ⊂M is generic if Ec is meager.

Note:

• A nowhere dense set is in no open set dense.

• In (b) we can always assume that Fn = F̄n.

• F = {x}, x ∈M is nowhere dense. So Q is meager in R.

Theorem 6.2 (Baire). Let (M,d) be a complete metric space.
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(a) If for n ∈ N, Fn ⊂M is closed and nowhere dense, then( ⋃
n∈N

Fn
)o

= int(
⋃
n∈N

Fn) = ∅.

(b) If for n ∈ N,On ⊂ M is open and dense in M , then
⋂
n∈N On is dense in

M .

Remark 6.3. (a) says that in a complete metric space, meager sets are nowhere
dense.

(b) says that in a complete metric space, a generic set is dense.

Proof of Theorem 6.2. Step 1: (a)⇔ (b).
Indeed, note that for any E ⊂M one has

int(Ec) = Ēc (why?) (I.8)

Thus if (a) holds, On ⊂ M open and dense ⇒ Fn := Ocn is closed and nowhere
dense. ( ⋂

n∈N
On
)c

=
⋃
n∈N

Ocn =
⋃
n∈N

Fn

has empty interior, so

⇒ ∅ = int((
⋂
n∈N

On)c) =︸︷︷︸
(I.8)

(
⋂
n∈N

On)c

so
⋂
n∈N On = M .

Conversely, if (b) holds and F is meager, F =
⋃
n∈N Fn, Fn closed and nowhere

dense, On = F cn is open and dense. By (I.8) (Ōn)c = int(Ocn) = intFn = ∅, so
On is dense in M

⇒
⋂
n∈N

On = M so ∅ = (
⋂
n∈N

On)c

= int((
⋂
n∈N

On)c)

= int(
⋃
n∈N

Ocn)

= int(
⋃
n∈N

Fn)

so (a) holds.
Step 2: (b) is true: Let On ⊂M open and dense, and set D :=

⋂
n∈N On.

So it is enough to show that every open ε-ball in M contains an element in D.
O1 is open and dense⇒ O1∩Bε(x0) 6= ∅ ⇒ ∃x1 ∈ O1∩Bε(x0) and ∃0 < ε1 ≤ 1

2ε
such that

Bε1(x0) ⊂ B2ε1(x1) ⊂ O1 ∩Bε(x0).

Now consider O2 which is open and dense. As above ⇒ O2 ∩ Bε1(x1) 6= ∅, so
∃x2 ∈ O2, ε2 <

1
2ε1 such that

Bε2(x2) ⊂ B2ε2(x2) ⊂ O2 ∩ O1 ∩Bε(x0).

Continuing inductively, there exist sequences (εn)n, (xn)n such that
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(1) 0 < εn <
1
2εn−1, in particular εn < 2−nε

(2) Bεn(xn) ⊂ B2εn(xn) ⊂ On ∩ Bεn−1
(xn−1) ⊂ · · · ⊂ O1 ∩ O2 . . .On ∩ Bε(x0)

for all n ∈ N. In particular, xn ⊂ BεN (xN ) ⊂ B2−Nε(x0) for all n ≥ N .

⇒ (xn)n is Cauchy, M is complete, so x = limxn ∈M exists

⇒ x ∈ BεN (xN ) ∀N ∈ N.

So D ∩Bε(x0) 6= ∅ ∀ε > 0, x0 ∈M , so D is dense in M .

Corollary 6.4 (Baire). Let M be a complete metric space, (Fn)n ⊂ M closed
such that M =

⋃
n∈N Fn. Then there exists n0 ∈ N : intFn0 6= ∅. So a complete

metric space is not meager.

Proof. Fn is closed. If intFn = ∅, by Theorem 6.2(a), F =
⋃
n∈N Fn has empty

interior, so M = F has empty interior, but Mo = int(M) = M , a contradiction.

6.2 Application I: The set of discontinuities of a limit of
continuous functions

Theorem 6.5. Assume that (fn)n : M → C are continuous, M is complete
metric space and

f(x) := lim
n→∞

fn(x)

exists for all x ∈ M . Then the set of points where f is discontinuous is (at
most) meager. In other words, the set of points where f is continuous is the
complement of a meager set, in particular it is dense.

Proof. Let D = set of discontinuities of f . The oscillations of the function f at
a point x are

osc(f)(x) := lim
r↘0

w(f)(r, x) = inf
r>0

w(f)(r, x)

with w(f)(r, x) := supy,z∈Br(x) |f(y)− f(z)| (which is decreasing in r).
So osc(f)(x) < ε ⇐⇒ ∃ ball B centered at x with |f(y)− f(z)| < ε ∀z, y ∈ B.
Note also

osc(f)(x) = 0 ⇔ f is continuous at x (I.9)

∀ε > 0 Eε := {x ∈M |osc(f)(x) < ε} is open (I.10)

(I.9) is immediate and for (I.10) note that if x ∈ Eε there exists r > 0 with

sup
y,z∈Br(x)

|f(y)− f(z)| < ε.

So if x̃ ∈ B ε
2
(x) then x̃ ∈ Eε since B ε

2
(x̃) ⊂ Bε(x) and hence

sup
y,z∈B ε

2
(x̃)

|f(y)− f(z)| ≤ sup
y,z∈Bε(x)

|f(y)− f(z)| < ε.

Thus B ε
2
(x̃) ⊂ Eε, so Eε is open.

We need one more
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Lemma 6.6. Let (fn)n be a sequence of continuous functions on a complete
metric space M and fn(x) → f(x) ∀x ∈ M . Then given any open ball B ⊂ M
and ε > 0, there exist an open ball B0 ⊂ B and m ∈ N such that |fm(x)−f(x)| ≤
ε ∀x ∈ B0.

Proof. Let Y be a closed ball in M and recall that Y is itself a complete metric
space. Define

El := {x ∈ Y | sup
j,k≥l

|fj(x)− fk(x)| ≤ ε}

=
⋂
j,k≥l

{x ∈ Y | |fj(x)− fk(x)| ≤ ε}︸ ︷︷ ︸
closed since fn is continuous

.

So El is closed and since fn(x)→ f(x) ∀x ∈M we have Y =
∞⋃
l=1

El.

By Corollary 6.4 applied to Y , some set, say Em, must contain an open ball B0.
But then

sup
j,k≥l

|fj(x)− fk(x)| ≤ ε ∀x ∈ B0

and letting k →∞ one sees

|fm(x)− fk(x)| ≤ ε ∀x ∈ B0.

To finish the proof of Theorem 6.5 define

Fn := {x ∈M |osc(f)(x) ≥ 1

n
}.

So Fn = Ec1
n

(from (I.10)) so Fn is closed and D =
⋃
n∈N Fn is the set of

discontinuities of f .
Final claim: Each Fn is nowhere dense!
Indeed, if not, let B be open ball with B ⊂ Fn. Then setting ε = 1

4n in Lemma
6.6, we get an open ball B0 ⊂ B and m ∈ N such that

|fm(x)− f(x)| ≤ 1

4n
∀x ∈ B0.

fm is continuous ⇒ ∃ ball B′ ⊂ B0 such that

|fm(y)− fm(z)| ≤ 1

4n
∀y, z ∈ B′.

Then

|f(y)− f(z)| ≤ |f(y)− fm(y)|+ |fm(y)− fm(z)|+ |fm(z)− f(z)|

≤ 1

4n
+

1

4n
+

1

4n
=

3

4n
<

1

n
∀y, z ∈ B′ ⊂ B ⊂ Fn.

So if x′ is the center of B′ then

osc(f)(x′) <
1

n
,

which contradicts x′ ∈ Fn!
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6.3 Application II: Continuous but nowhere differentiable
functions

Consider the complete metric space C([0, 1]) with norm ‖f‖∞ := supx∈[0,1] |f(x)|
and metric d(f, g) = ‖f − g‖∞.

Theorem 6.7. The set of functions in C([0, 1]) which are nowhere differentiable
is generic (in particular, it is dense!).

Proof. Let D = set of functions f ∈ C([0, 1]) which are differentiable at at least
one point. We have

D ⊂
⋃
N∈N
{f ∈ C([0, 1])|∃x∗ ∈ [0, 1] : ∀x ∈ [0, 1]|f(x)− f(x∗)| ≤ N |x− x∗|}︸ ︷︷ ︸

=:EN

(I.11)

Claim:

(a) EN is closed.

(b) EN is nowhere dense, i.e., it has empty interior.

Then Theorem 6.2 yields the claim.

Proof of (a). Let {fn} ⊂ EN with fn → f . Let x∗n be the point for which (I.11)
holds with f replaced by fn. [0, 1] is compact ⇒ ∃(x∗nk

) which converges to a
limit x∗ ∈ [0, 1]. Then

|f(x)− f(x∗)| ≤ |f(x)− fnk
(x)|+ |fnk

(x)− fnk
(x∗)|+ |fnk

(x∗)− f(x∗)|.
(I.12)

Since ‖fn − f‖∞ → 0, for ε > 0 ∃K such that

∀k > K |f(x)− fnk
(x)| < ε

2
and |fnk

(x∗)− f(x∗)| < ε

2
.

For the middle term in (I.12) note that fnk
∈ EN so

|fnk
(x)− fnk

(x∗)| ≤ |fnk
(x)− fnk

(x∗nk
)|+ |fnk

(x∗nk
)− fnk

(x∗)|
≤ N |x− x∗nk

|+N |x∗nk
− x∗|

and so

|f(x)− f(x∗)| ≤ ε+N |x− x∗nk
|+N |x∗nk

− x∗|
→ ε+ |x− x∗|+N · 0 as k →∞.

Proof of (b). Let P ⊂ C([0, 1]) be the subspace of all continuous piecewise linear
functions. For 0 < M let PM ⊂ P be the set of continuous piecewise linear
functions with slope ≥ M or ≤ −M . Think of PM as the set of ”zig-zag“
functions!
Key fact: PM ∩ EN = ∅ if M > N !

Lemma 6.8. ∀M > 0 PM is dense in C([0, 1]).
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Now we finish the proof that EN has no interior points: Let f ∈ EN and
ε > 0. Fix M > N , then ∃h ∈ PM with ‖f − h‖ < ε and h /∈ EN since
PM ∩ EN = ∅ when M > N . So no open ball around f is entirely contained in
En, i.e., EN has no interior.

Proof of Lemma 6.8. Step 1: P is dense in C([0, 1]): Let f ∈ C([0, 1]). Then
f is uniformly continuous, since [0, 1] is compact. So there exists g ∈ P with
‖f − g‖ < ε. Indeed, since f is uniformly continuous ∃δ > 0 such that

|f(x)− f(y)| < ε ∀|x− y| < δ.

Choose n ∈ N such that 1
n < δ and let g be the piecewise linear function on

each interval [ kn ,
k+1
n ], k = 0, . . . , n − 1 with g( kn ) := f( kn ), g(k+1

n ) := f(k+1
n )

and linearly interpolated in between. Then ‖f − g‖ < ε!
Step 2: PM is dense in P : Let g(x) = ax+ b for 0 ≤ x ≤ 1

n and

ϕε(x) = g(x) + ε, ψε(x) = g(x)− ε.

Begin at g(0), travel a slope +M until you intersect ϕε. Reverse direction and
travel on a line segment of slope −M until you intersect ψε. This yields a
function h ∈ PM with

ψε(x) ≤ h(x) ≤ ϕε(x) ∀0 ≤ x ≤ 1

n

so

|g(x)− h(x)| ≤ ε in [0,
1

n
].

Then begin at h( 1
n ) and repeat the argument on the interval [ 1

n ,
2
n ] and continue

in this fashion.
⇒ get a function h ∈ PM with ‖g − h‖ ≤ ε. So ‖f − h‖ ≤ 2ε

6.4 Application III: The uniform boundedness principle

Recall: Let E,F be normed vector spaces. L(E,F ) = vector space of all
bounded linear operators T : E → F with the norm ‖T‖ := supx∈E,‖x‖E≤1 ‖Tx‖.

Theorem 6.9 (Banach-Steinhaus uniform boundedness principle). Let E be a
Banach space and F be a normed vector space, (Ti)i∈I be a family (not neces-
sarily countable) of continuous linear operators, Ti ∈ L(E,F ) ∀i ∈ I. Assume
that

sup
i∈I
‖Tix‖ <∞ ∀x ∈ E. (I.13)

Then

sup
i∈I
‖Ti‖ <∞, (I.14)

i.e., ∃C <∞ : ‖Tix‖ ≤ C‖x‖ ∀x ∈ E,∀i ∈ I.
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Remark 6.10. The conclusion of Theorem 6.9 is quite remarkable and surpris-
ing. Just having the pointwise estimate supi∈I ‖Tix‖ we get supi∈I sup‖x‖≤1 ‖Tix‖ <
∞.

Proof. ∀n ∈ N let

Fn := {x ∈ E|∀i ∈ I, ‖Tix‖ ≤ n}.

Fn is closed and
⋃
n∈N Fn = E. By Corollary 6.4 ⇒ ∃m ∈ N : intFm 6= ∅. Then

∃x0 ∈ Fm, r > 0, Br(x0) ⊂ Fm. Then

‖Ti(x0 + r · z)‖ ≤ m, ‖z‖ ≤ 1

⇒ ‖Ti(z)‖ =
1

r
‖Ti(rz)‖ =

1

r
‖Ti(x0 + rz)− Ti(x0)‖

≤ 1

r
‖Ti(x0 + rz)‖︸ ︷︷ ︸

≤m

+
1

r
‖Ti(x0)‖︸ ︷︷ ︸
≤m

≤ 2m

r
∀z ∈ E, ‖z‖ ≤ 1.

Corollary 6.11. Let E,F be Banach spaces, (Tn)n ⊂ L(E,F ) such that for
∀x ∈ E, Tnx converges and let Tx : limn→∞ Tnx. Then

(a) supn∈N ‖Tn‖ <∞.

(b) T ∈ L(E,F ).

(c) ‖T‖ ≤ lim infn→∞ ‖Tn‖.

Proof. (a) Follows from Theorem 6.9 immediately.

(b) Also follows from Theorem 6.9 immediately.

(c)

‖Tx‖ ← ‖Tnx‖ ≤ C‖x‖ ∀x ∈ E

‖Tx‖ ← ‖Tnx‖ ≤ ‖Tn‖‖x‖

‖T‖ ≤ lim inf ‖Tn‖

Corollary 6.12. Let B ⊂ G and G be a normed vector space (not necessarily
complete). Then the following are equivalent

(a) B is bounded.

(b) f(B) is bounded for ∀f ∈ G∗.



46 CHAPTER I. NVS, BS AND MS

Proof. (a)⇒ (b) is obvious.
(b)⇒ (a): Recall that G∗ is a Banach space.
For x ∈ B and f ∈ G∗ let Tx(f) := f(x), Tx(f) is linear and bounded, because

sup
f∈G∗,‖f‖=1

|Tx(f)| ≤ ‖x‖‖f‖ ≤ ‖x‖.

By Theorem 6.9 and (b) with E = G∗, F = F and I = B, we conclude

‖Tx(f)‖ ≤ C‖f‖ ∀x ∈ B, ∀f ∈ G∗.

Then for ∀x ∈ B

‖x‖ = sup
f∈G∗,‖f‖≤1

|f(x)| = sup
f∈G∗,‖f‖≤1

|Tx(f)| ≤ C‖x‖.

Notation: (xn)n ⊂ E converges weakly to x ∈ E (xn ⇀ x) if ∀f ∈ E∗ it
holds f(xn)→ f(x).

Corollary 6.13. Weakly convergent sequences are bounded.

Proof. If (xn)n converges weakly, then for any f ∈ E∗, (f(xn))n is bounded.
The result follows from Corollary 6.12.

Corollary 6.14 (Statement dual to 6.12). Let G be a Banach space and B∗ ⊂
G∗. Then the following are equivalent

(a) ∀x ∈ G the set B∗(x) := {f(x)|f ∈ B∗} is bounded.

(b) B∗ is bounded.

Proof. (b)⇒ (a) is obvious (∃M, ‖f‖ ≤M ∀f ∈ B∗).
(a) ⇒ (b): We apply Theorem 6.9 with E = G,F = F, I = B∗. For every
f ∈ B∗ we set Tf (x) := f(x), x ∈ G. Due to (a) and Theorem 6.9 ∃C <∞

|f(x)| = |Tf (x)| ≤ C‖x‖ ∀f ∈ B∗, x ∈ G.

By definition

‖f‖ = sup
x∈F,‖x‖≤1

|f(x)| ≤ C ∀f ∈ B∗,

i.e., B∗ is bounded.

6.5 Application IV: The Open Mapping and the Closed
Graph theorems

Theorem 6.15 (Open Mapping). Let E,F be Banach spaces and T ∈ L(E,F )
be surjective. Then there exists C > 0 such that

T (BE1 (0)) ⊃ BFc (0). (I.15)
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Remark 6.16. Property (I.15) ensures that the image under T of any open set
in E is open in F .
Indeed, let U be open in E. Fix y0 ∈ T (U) so y0 = Tx0, x0 ∈ U . Let r0 > 0
be such that Br0(x0) ⊂ U . Due to Theorem 6.15 it holds T (Br0(0)) ⊃ Bcr0(0)
(use linearity).

Bcr0(y0) = y0 +Bcr0(0) ⊂ T (x0) + T (Br0(0))

= T (x0 +Br0(0)) = T (Br0(x0)︸ ︷︷ ︸
⊂U

)

⇒ T (U) is open.

Corollary 6.17. Let E,F be Banach spaces, T ∈ L(E,F ) bijective (i.e., injec-
tive and surjective). Then T−1 ∈ L(F,E).

Proof. Obviously, T−1 exists and it is linear. By (I.15)

T−1T (BE1 (0)) ⊃ T−1BFC (0)

⇒ BE1 (0) ⊃ T−1Bc(0).

So if y ∈ F, ‖y‖ < C ⇒ ‖T−1(y)‖ < 1

⇒ ‖T−1y‖ < 1

C
, ‖y‖ ≤ 1

‖T−1‖ ≤ 1.

Corollary 6.18. Let E be a vector space with two norms ‖ · ‖1, ‖ · ‖2 and
assume that E is complete w.r.t. either norm and there exists C > 0 such that
‖x‖2 ≤ C‖x‖1 ∀x ∈ E. Then the two norms are equivalent, i.e., there exists
C1 > 0 such that ‖x‖1 ≤ C1‖x‖2 ∀x ∈ E.

Proof. Apply Corollary 6.17 with E = (E, ‖ · ‖1), F = (E, ‖ · ‖2), T = Id.

Proof of Theorem 6.15. Step 1: Assume T is linear surjective operator from E
onto F . Then there exists c > 0 such that

T (B1(0)) ⊃ B2c(0). (I.16)

Indeed, set

Fn := nT (B1(0)).

T is surjective ⇒ F =
⋃∞
n=1 Fn. So by Baire there exists m ∈ N : int(Fm) 6= ∅.

By linearity int(T (B1(0))) 6= ∅!
Pick c > 0 and y0 ∈ F such that

B4c(y0) ⊂ T (B1(0)),
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in particular

y0 ∈ T (B1(0)). (I.17)

By symmetry

−y0 ∈ T (B1(0)). (I.18)

Adding (I.17) and (I.18) we get

B4c(0) ⊂ T (B1(0)) + T (B1(0))

and since T (B1(0)) is convex,

T (B1(0)) + T (B1(0)) = 2T (B1(0))

so (I.16) holds.
Step 2: Assume T ∈ L(E,F ) and (I.16) holds. Then (I.15) holds, i.e. T (B1(0)) ⊃
Bc(0). Indeed, choose any y ∈ F, ‖y‖ < c.
Aim: Find some x ∈ E such that ‖x‖ < 1 and Tx = y (because then (I.15)
holds! (why?)).
By (I.16) we know that

∀α > 0 and ỹ ∈ F with ‖ỹ‖ < αC

∃z ∈E with ‖z‖ < α

2
and ‖ỹ − Tz‖ < ε. (I.19)

(Hint: Use (I.16) and linearity to see this)
Choosing ε = c

2 we find z1 ∈ E such that

‖z1‖ <
1

2
and ‖y − Tz1‖ <

1

2
C.

Now apply (I.19) to ỹ = y − Tz1. Since ‖ỹ‖ < 1
2C,α = 1

2 and by (I.19) with

ε = ε2 = C
22 , ∃z2 ∈ E with

‖z2‖ <
1

4
and ‖ỹ − Tz2‖ = ‖y − Tz1 − Tz2‖ <

α

2
c =

c

4
.

Proceeding inductively, using (I.19) repeatedly with ε = εn = c
2n , α = αn = 1

2n

we obtain a sequence (zn)n such that

‖zn‖ <
1

2n
and ‖y − T (z1 + z2 + . . . zn)‖ < C

2n
∀n ∈ N.

So xn := z1 + . . . zn is Cauchy and hence xn → x for some x ∈ E.
Clearly

‖x‖ ≤
∞∑
n=1

‖zn‖ <
∞∑
n=1

1

2n
= 1

and since T is continuous we have y = Tx.
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Theorem 6.19 (Closed Graph). Let E,F be Banach spaces and T a linear
operator from E to F . Then

T is continuous ⇐⇒ The graph of T is closed.

Remark 6.20. • Assume that T : E → F . The graph of T is the set
G(T ) := {(x, T (x))|x ∈ E} ⊂ E × F .

• The set G(T ) ⊂ E×F is closed if for every sequence (xn)n ⊂ E for which
xn → x and yn := Txn → y we have y = Tx.

Proof. ”⇒“: Clear by continuity of T !
”⇐“: Consider the two norms on E:

‖x‖1 := ‖x‖E + ‖Tx‖F and ‖x‖2 := ‖x‖E .

The norm ‖ · ‖1 is called the graph norm.
E is a Banach space w.r.t. ‖ · ‖2 by assumption and certainly

‖x‖2 ≤ ‖x‖1 ∀x ∈ E.

Let (xn)n ⊂ E be Cauchy w.r.t. ‖·‖2, i.e., ∀ε > 0 ∃N : ‖xn−xm‖2 < ε ∀n,m ≥
N . Then yn := Txn is Cauchy in F and xn is Cauchy in E. Therefore x = limxn
and y = limTxn exist. Since G(T ) is closed, it follows that y = Tx. Thus

‖x− xn‖1 = ‖x− xn‖E + ‖y − Txn‖F → 0 as n→∞

so xn converges to x also in ‖ · ‖1 norm, i.e., (E, ‖ · ‖1) is complete!
By Corollary 6.18 the two norms are equaivalent, i.e., there exists c > 0 such
that

‖x‖1 ≤ c‖x‖2 = c‖x‖E

so

‖Tx‖F ≤ ‖x‖E + ‖Tx‖F = ‖x‖1 ≤ c‖x‖E .

7 Weak Topologies. Reflexive Spaces. Separa-
ble Spaces. Uniform Convexity

7.1 The coarsest topology for which a collection of maps
becomes continuous

Recall: Given a set X a topology τ on X is a collection of subsets of X, called
the open sets, such that

(1) ∅ ∈ τ , X ∈ τ ,

(2) arbitrary unions of sets in τ are in τ ,

(3) finite intersections of sets in τ are in τ .
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(2) is called τ is stable under arbitrary unions (or
⋃

arbitrary), (3) is called τ is
stable under finite intersections (or

⋂
finite).

A set X with a topology τ is called topological space.
Suppose X is a set (no structure yet) and (Yi)i∈I a collection of topological

spaces, and (ϕi)i∈I a collection of maps ϕi : X → Yi.
Problem 1: Construct a topology on X that makes all the maps (ϕi)i∈I

continuous. Can one find a topology on X which is most economical in the
sense that it contains the fewest open sets?

Note: If X is equipped with the discrete topology, then all subsets of X are
open and hence every map ϕi : X → Yi is continuous. But this topology is
huge!

Want: The cheapest topology! It is called the coarsest or weakest topology
associated with (ϕi)i∈I ,

If ωi ⊂ Yi is open then ϕ−1
i (ωi) is necessarily open in τ and as ωi varies in

the open subsets of Yi and i runs through I, one gets a family of open subsets
which is necessarily open in X! Call this (Uλ)λ∈Λ.
More precisely: (Yi, τi) topological spaces, ϕi : X → Yi,

Λ := {λ = (i, ωi)|i ∈ I, ωi ∈ τi},

Uλ = ϕ−1
i (ωi).

Catch: (Uλ)λ∈Λ does not need to be a topology!
⇒ Problem 2: Given a set X and a family (Uλ)λ∈Λ of subsets of X, construct

the cheapest topology τ on X which contains (Uλ)λ∈Λ.
So τ must be stable under

⋂
finite and

⋃
arbitrary and Uλ ⊂ τ ∀λ ∈ Λ.

Step 1: Consider the enlarged family of all finite intersections of sets in
(Uλ)λ∈Λ:

⋂
λ∈Γ Uλ, where Γ ⊂ Λ is finite. Call this family Φ. It is stable

under
⋂

finite.
Step 2: Φ need not be stable under

⋃
arbitrary ⇒ consider families F obtained

from Φ by taking arbitrary unions of sets in Φ. So F is stable under
⋃

arbitrary.

Lemma 7.1. τ :=
⋃

arbitrary

⋂
finite Uλ is stable under

⋂
finite. Hence τ is a

topology!

Proof. See any book on point set topology.

A basis of a neighborhood of a point x ∈ X is a family (Ui)i∈I of open
sets containing x, such that any open set containing x contains an open set from
the basis (i.e., from (Ui)i∈I).

Example: In a metric space X, take the open balls centered at x ∈ X.
In our situation: Given x ∈ X, Vi a neighborhood of ϕi(x) in Yi⋂

finite

ϕ−1
i (Vi)

yields a basis of neighborhoods of x in X.
In the following, we equip X with the topology τ which is the weakest

(smallest, coarsest) topology for which all the ϕi : X → Yi are continuous for
all i ∈ I.
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Proposition 7.2. Let (xn)n ⊂ X. Then xn → x in τ (i.e., for any U ∈ τ, x ∈
U, xn ∈ U for almost all n) ⇐⇒ ϕi(xn)→ ϕi(x) as n→∞ ∀i ∈ I.

Proof. ⇒: Simple, since by definition ϕi is continuous ∀i ∈ I.
⇐: Let U be a neighborhood of x. From the discussion above we may assume
U is of the form

U =
⋂
i∈J

ϕ−1
i (Vi),

J ⊂ I finite, ϕi(x) ∈ Vi ∈ τi. Since ϕi(xn) → ϕi(x) ∀i ∈ I ⇒ for i ∈ J ∃Ni ∈
N : ϕi(xn) ∈ Vi ∀n ≥ Ni. Choose N := maxi∈J(Ni) <∞

⇒ ϕi(xn) ∈ Vi ∀i ∈ J, ∀n ≥ N

⇒ xn ∈ U ∀n ≥ N.

Proposition 7.3. Let Z be a topological space, ψ : Z → X. Then

ψ is continuous ⇐⇒ ϕi ◦ ψ : Z → Yi is continuous ∀i ∈ I.

Proof. ”⇒“: Simple: use that compositions of continuous functions are contin-
uous.
”⇐“: Need to show: ψ−1(U) is open (in Z) ∀ open set U in X. U has the form

U =
⋃

arbitrary

⋂
finite

ϕ−1
i (Vi), Vi ∈ τi

ψ−1(U) =
⋃

arbitrary

⋂
finite

ψ−1(ϕ−1
i (Vi))

=
⋃

arbitrary

⋂
finite

(ϕi ◦ ψ)−1(Vi)︸ ︷︷ ︸
open in Z︸ ︷︷ ︸

is open︸ ︷︷ ︸
is open!

so ψ−1(U) is open in Z, so ψ is continuous.

7.2 The weakest topology σ(E,E∗)

Let E be a Banach space, E∗ the dual, so E has a norm ‖ · ‖ = ‖ · ‖E , f ∈ E∗
are continuous linear functionals on E. For f ∈ E∗ let

ϕf :

{
E → F
x 7→ ϕf (x) := f(x)

Take I = E∗, Yi = F, X = E with the usual topology on R, resp. C.

Definition 7.4. The weak topology σ(E,E∗) on E is the coarsest (smallest)
topology associated with the collection (ϕf )f∈E∗ in the sense of Section 7.1.
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Note: Since every map ϕf = f is continuous linear functional the weak
topology is weaker (it contains fewer open sets) than the usual topology on E
induced by the norm on E!

Proposition 7.5. The weak topology σ(E,E∗) is Hausdorff (i.e., it separates
points).

Proof. Let x1, x2 ∈ E, x1 6= x2. We need to construct open sets O1,O2 ∈
σ(E,E∗) with x1 ∈ O1, x2 ∈ O2,O1 ∩ O2 = ∅.
By Hahn-Banach (2nd geometric form) we can strictly separate {x1}, {x2} by
some f ∈ E∗, i.e., ∃α ∈ R

Ref(x1) < α < Ref(x2).

Set

O1 := {x ∈ E|Ref(x) < α} = ϕ−1
f ((−∞, α) + iR) ∈ σ(E,E∗)

O2 := {x ∈ E|Ref(x) > α} = ϕ−1
f ((α,+∞) + iR) ∈ σ(E,E∗).

Clearly x1 ∈ O1, x2 ∈ O2,O1 ∩ O2 = ∅.

Proposition 7.6. Let x0 ∈ E. Given ε > 0 and finitely many f1, . . . , fk ∈ E∗,
and let

V := V (f1, . . . fk, ε) := {x ∈ E| |fi(x− x0)| < ε,∀i = 1, . . . , k}.

Then V is a neighborhood of x0 in σ(E,E∗) and we get a basis of neighborhoods
of x0 in σ(E,E∗) by varying ε > 0, k ∈ N, and f1, . . . fk ∈ E∗.

Proof.

x0 ∈ V =

k⋂
i=1

ϕ−1
fi

({z ∈ C| |z − αi| < ε}) ∈ σ(E,E∗), αi := fi(x0), is open!

Conversely, let x0 ∈ U ∈ σ(E,E∗). By definition of σ(E,E∗), U contains an
open set W 3 x0 of the form

W =
⋂

finite

ϕ−1
fi

(Vi),

Vi neighborhood of fi(x0) = αi in F.

⇒ ∃ε > 0 : {z ∈ C| |z − αi| < ε} ⊂ Vi ∀i = 1, . . . k

so x0 ∈ V ⊂W ⊂ U .

Notation: If (xn)n ⊂ X converges to x in the weak topology σ(E,E∗), we
write xn ⇀ x (or xn ⇀ x in σ(E,E∗), or xn ⇀ x weakly in σ(E,E∗), or xn ⇀ x
weakly). We say that xn → x strongly if ‖xn − x‖ → 0 (usual convergence in
E).

Proposition 7.7. Let (xn)n ⊂ E be a sequence. Then

(a) xn ⇀ x weakly ⇐⇒ f(xn)→ f(x) ∀f ∈ E∗.
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(b) If xn → x strongly then xn ⇀ x weakly.

(c) If xn ⇀ x weakly, then (‖xn‖)n is bounded in R and ‖x‖ ≤ lim infn→∞ ‖xn‖.

(d) If xn ⇀ x weakly and fn → f strongly in E∗ (i.e., ‖fn − f‖E∗ → 0) then
fn(xn)→ f(x).

Proof. (a) Follows from the definition of σ(E,E∗) and Proposition 7.2.

(b) By (a)

|f(xn)− f(x)| = |f(xn − x)| ≤ ‖f‖E∗‖xn − x‖E → 0.

(c) Note that ∀f ∈ E∗, (f(xn))n ⊂ F is bounded. Therefore, by the uniform
boundedness principle

∞ > sup
n∈N

sup
f∈E∗,‖f‖E∗≤1

|f(xn)|︸ ︷︷ ︸
=‖xn‖E

= sup
n∈N
‖xn‖E .

|f(x)| ← |f(xn)| ≤ ‖f‖E∗‖xn‖E ≤ ‖xn‖E if ‖f‖E∗ ≤ 1.

⇒ |f(x)| ≤ lim inf
n→∞

‖xn‖E ∀f ∈ E∗, ‖f‖E∗ ≤ 1

⇒ ‖x‖E = sup
f∈E∗,‖f‖E∗≤1

|f(x)| ≤ lim inf
n→∞

‖xn‖E .

(d) Note that by (a) and (c)

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)|
≤ ‖fn − f‖E∗‖xn‖+ |f(xn − x)| → 0 as n→∞.

Proposition 7.8. If E is finite-dimensional then σ(E,E∗) and the usual topol-
ogy are the same, so a sequence (xn)n converges weakly ⇔ (xn)n converges
strongly.

Proof. Since σ(E,E∗) contains fewer open sets than the strong topology it is
enough to show that every (strongly) open set is weakly open.
Let x0 ∈ E and U strongly open with x0 ∈ U . Need to find f1, . . . , fk ∈ E∗, ε >
0 with

V := V (f1, . . . , fk, ε) = {x ∈ E| |fi(x− x0)| < ε for all i = 1, . . . , k} ⊂ U.

Let r > 0 such that Br(x0) ⊂ U . Pick a basis e1, e2, . . . , ek in E such that
‖ei‖ = 1 for all i = 1, . . . k. Note that

x =

k∑
j=1

xjej and x 7→ xj =: fj(x)
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are continuous linear functionals on E. Also

‖x− x0‖ = ‖
k∑
j=1

fj(x− x0)ej‖

≤
k∑
j=1

|fj(x− x0)|‖ej‖

=

k∑
j=1

|fj(x− x0)| ≤ k · ε ∀x ∈ V.

Choose r = ε
k to get V ⊂ U .

Remark 7.9. Weakly open (resp. closed) sets are always open (resp. closed)
in the strong topology! If E is infinite-dimensional, the weak topology σ(E,E∗)
is strictly coarser (smaller) than the strong topology.

Example. Let E be infinite-dimensional. The unit sphere

S := {x ∈ E| ‖x‖ = 1} ⇒ S
σ(E,E∗)

= BE = {x ∈ E| ‖x‖ ≤ 1}!

Proof. Step 1: {x ∈ E| ‖x‖ ≤ 1} ⊂ Sσ(E,E∗)
.

Indeed, let x0 ∈ V ⊂ σ(E,E∗). Need to show that V ∩ S 6= ∅!.
By Proposition 7.6, we may assume

V = {x ∈ E| |fi(x− x0)| < ε ∀i = 1, . . . , k}

for some ε > 0, f1, . . . , fk ∈ E∗.
Claim: ∃y0 ∈ E \ {0} with fi(y0) = 0 ∀i = 1, . . . , k.
If not, the map

ϕ :

{
E → Fk

x 7→ ϕ(x) := (f1(x), f2(x), . . . , fk(x))

is injective (why?) and hence ϕ would be injective and surjective from E onto
ϕ(E) ⊂ Fk. Since ϕ(E) ⊂ Fk is a Banach space, the inverse mapping theorem
would give that ϕ and ϕ−1 are continuous so E is homeomorphic to a finite-
dimensional space, hence E would be finite-dimensional. So the claim is true.
Note that x0 + ty0 ∈ V for all t ∈ R. Since g(t) := ‖x0 + ty0‖ is continuous on
[0,∞), g(0) = ‖x0‖ < 1, limt→∞ g(t) = ∞, there exists t0 > 0 : ‖x0 + ty0‖ =
1⇒ x0 + t0y0 ⊂ S ∩ V . By Step 1 we see

S ⊂ BE ⊂ S
σ(E,E∗)

. (∗)

Step 2: BE is closed in the weak topology.
Indeed,

BE =
⋂

f∈E∗,‖f‖E∗≤1

{x ∈ E| |f(x)| ≤ 1}︸ ︷︷ ︸
weakly closed

is weakly closed.

By (∗) and Step 2: BE = S
σ(E,E∗)

since S
σ(E,E∗)

is the smallest weakly closed
set containing BE and BE is weakly closed.
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Example. The unit ball U = {x ∈ E| ‖x‖ < 1}, E infinite-dimensional, is not
weakly open.
Indeed, if U were weakly open then U c = {x ∈ E| ‖x‖ ≥ 1} is weakly closed and
hence

S = BE ∩ U c

is weakly closed which by the previous Example it is not!

7.3 Weak topology and convex sets

Recall that every weakly closed set is strongly closed, but the converse is false
if E is infinite-dimensional.
But: convex + strongly closed ⇒ weakly closed.

Theorem 7.10. Let C ⊂ E be convex. Then C is closed if and only if C is
weakly closed.

Proof. ”⇐“: Clear since Cc is weakly open, hence open.
”⇒“: Need to check that Cc is weakly open. Let x0 /∈ C. By Hahn-Banach,
there exists a closed hyperplane which strictly separates {x0} and C, i.e., there
exists f ∈ E∗, α ∈ R such that

Ref(x0) < α < Ref(y) ∀y ∈ C.

Set

V := {x ∈ E|Ref(x) < α} ∈ σ(E,E∗).

Then x0 ∈ V, V ∩ C = ∅ so V ⊂ Cc.

Remark 7.11. The above proof shows that C =
⋂
Hc where the intersection is

over all closed half-spaces HC which contain C.

Corollary 7.12 (Mazur). Assume that xn ⇀ x weakly. Then there exists a
sequence (yn)n of convex combinations of xn which converges strongly to x.

Proof. Let C := conv(
⋃∞
l=1{xl}) be the convex hull of xn. Since x belongs to

the weak closure of
⋃∞
l=1{xl}, it also belongs to the weak closure of C! By

Theorem 7.10 we get x ∈ C̄, the strong closure of C!

Corollary 7.13. Assume ϕ : E → (−∞,+∞] is convex and lower semi-
continuous (l.s.c) in the strong topology. Then ϕ is l.s.c. in the weak topology.

Proof. ϕ is (strongly) l.s.c. if for every sequence (xn)n ⊂ E, xn → x one has

lim inf
n→∞

ϕ(xn) ≥ ϕ(x)

and similarly for weakly l.s.c. (replace xn → x by xn ⇀ x).
In terms of the level sets:

Lemma. ϕ : E → (−∞,+∞] is strongly (resp. weakly) l.s.c. if for all λ ∈ R
the sets

Aλ := {x ∈ E|ϕ(x) ≤ λ}

are strongly (resp. weakly) closed.
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Proof. If ϕ is strongly l.s.c and xn ∈ Aλ with xn → x, then

ϕ(x) ≤ lim inf
n→∞

ϕ(xn)︸ ︷︷ ︸
≤λ

≤ λ

so x ∈ Aλ, i.e., Aλ is closed.

For the converse, assume that ϕ is not l.s.c. at some point x but Aλ is closed
∀λ ∈ R. So there exists a sequence (xn)n ⊂ E, xn → x and

lim inf
n→∞

ϕ(xn) < ϕ(x).

Thus there exists a subsequence, also called (xn)n, and λ ∈ R such that

ϕ(xn) < λ < ϕ(x) ∀n ∈ N.

But then xn ∈ Aλ ∀n ∈ N and since xn → x and Aλ is closed, also x ∈ Aλ, i.e.,
ϕ(x) ≤ λ, a contradiction.

For the statement with strongly replaced by weakly, just replace xn → x by
xn ⇀ x in the proof.

Continuing the proof of the Corollary, we have

Aλ = {x ∈ E|ϕ(x) ≤ λ}

is closed, since ϕ is strongly l.s.c. Since ϕ is convex, we also have that Aλ is
convex (why?)! So Aλ is convex and strongly closed and by Theorem 7.10 it is
weakly closed!

Example. ϕ(x) = ‖x‖ is convex and strongly continuous so it is weakly l.s.c.
Hence if xn ⇀ x weakly, then ‖x‖ ≤ lim infn→∞ ‖xn‖ (compare with Proposition
7.7).

Theorem 7.14. Let E,B be Banach spaces and T : E → B linear. Then T is
continuous in the strong topologies on E and B if and only if T is continuous
in the weak topologies on E and B.

Proof. ”⇒“: By Proposition 7.3, we need to show that for any f ∈ B∗ the
composition f ◦T , i.e., the map x 7→ f(Tx) is continuous from (E, σ(E,E∗)) to
F.
Since x 7→ f(Tx) ∈ E∗ it is automatically also continuous w.r.t. σ(E,E∗)!
”⇐ “: Assume T : (E, σ(E,E∗))→ (B, σ(B,B∗)) is continuous. Then

G(T ) = {(x, Tx)|x ∈ E} ⊂ E ×B

is closed in E ×B equipped with the product topology σ(E,E∗)× σ(B,B∗) =
σ(E ×B, (E ×B)∗). So G(T ) is weakly closed, but then also strongly closed in
E × B. By the Closed graph theorem it follows that T : E → B is continuous
in the strong topology.
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7.4 The weak∗ topology σ(E∗, E)

Consider the dual space E∗ of a normed vector space E. So far, we have two
topologies on E∗:

(a) The usual (strong) topology associated to the norm on E∗, ‖f‖E∗ :=
sup‖x‖E≤1 |f(x)|.

(b) The weak topology σ(E∗, E∗∗), where E∗∗ = (E∗)∗ is the dual of E∗, from
the last sections.

Note that we can always consider E as a subset of E∗∗ = { continuous linear
functionals on E∗} by the following device: Given x ∈ E let ϕX : E∗ → F be
defined by

ϕx(f) := f(x).

Then ϕx ∈ E∗∗ corresponds to x ∈ E and x 7→ ϕx is injective since if ϕx1 = ϕx2

then for all f ∈ E∗ one has

f(x1) = ϕx1
= ϕx2

= f(x2)

and since E∗ separates the points in E this means x1 = x2! So the map x 7→ ϕx
yields an injection of E into E∗∗.

Definition 7.15. The weak∗ topology σ(E∗, E) is the smallest topology on E∗

associated with the family (ϕx)x∈E, i.e., it is the smallest topology on E∗ which
makes all the maps ϕx : E∗ → F, x ∈ E, continuous.

Remark 7.16. • Since E ⊂ E∗∗ it is clear that σ(E∗, E) contains fewer
open sets than the weak topology σ(E∗, E∗∗) which in turn has fewer open
sets that the strong topology on E∗.

• The reason why one wants to study these different notions of weak topolo-
gies is that the fewer open sets a topology has, the more sets are compact!
Since compact sets are fundamentally important – e.g., in the proof of
existence of minimizers – it is easy to understand the importance of the
weak∗ topology.

Proposition 7.17. The weak∗ topology is Hausdorff.

Proof. Given f1, f2 ∈ E∗ with f1 6= f2, there exists x ∈ E such that f1(x) 6=
f2(x) (this DOES NOT use Hahn-Banach, but just the fact that f1 6= f2!).
W.l.o.g., we can assume that Re f1(x) 6= Re f2(x). If not, then Im f1(x) 6=
Im f2(x) and hence

Re(−if1(x)) = Im f1(x) 6= Im f2(x) = Re(−if2(x))

so consider −if1,−if2 instead of f1 and f2.
W.l.o.g., Re f1(x) < Re f2(x) and choose α ∈ R : Re f1(x) < α < Re f2(x).
Set

O1 := {f ∈ E∗|Ref(x) < α} = ϕ−1
x ([−∞, α) + iR)

O2 := {f ∈ E∗|Ref(x) > α} = ϕ−1
x ((α,∞) + iR)

Then O1,O2 ∈ σ(E∗, E), f1 ∈ O1, f2 ∈ O2 and O1 ∩ O2 = ∅.
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Proposition 7.18. Let f0 ∈ E∗, n ∈ N, {x1, x2, . . . , xn} ⊂ E and ε > 0. Con-
sider

V = V (x1, . . . , xn, ε) := {f ∈ E∗| |(f − f0)(xj)| < ε for all j = 1, . . . , n}.

Then V is a neighborhood of f0 in σ(E∗, E). Moreover, we obtain a basis of
neighborhoods of f0 in σ(E,E∗) by varying ε > 0, n ∈ N, and x1, . . . , xn ∈ E.

Proof. A literal transcription of the proof of Proposition 7.6.

Notation: If a sequence (fn)n ⊂ E∗ converges to f in the weak∗ topology,

we write fn
∗
⇀ f .

To avoid confusion, we sometimes emphasize ”fn
∗
⇀ f in σ(E∗, E)“, ”fn ⇀ f

in σ(E∗, E∗∗)“ and ”fn → f strongly“.

Proposition 7.19. Let (fn)n ⊂ E. Then

(a) fn
∗
⇀ f in σ(E∗, E) ⇐⇒ fn(x) → f(x),∀x ∈ E (i.e., convergence of

functionals in σ(E∗, E) is the same as pointwise convergence of fn to f !).

(b) If fn → f strongly, then fn ⇀ f in σ(E∗, E∗∗).

If fn ⇀ f in σ(E∗, E∗∗), then fn
∗
⇀ f in σ(E∗, E).

(c) If fn
∗
⇀ f in σ(E∗, E), then (‖fn‖)n is bounded and ‖f‖ ≤ lim inf ‖fn‖.

(d) If fn
∗
⇀ f in σ(E∗, E) and if xn → x strongly in E, then fn(x)→ f(x).

Proof. Copy the proof of Proposition 7.7.

Remark 7.20. When E is finite-dimensional, then the three topologies (strong,
weak, weak∗) on E∗ coincide! Indeed, then the canonical injection J : E → E∗∗

given by x 7→ ϕx, ϕx(f) := f(x), f ∈ E∗ is surjective (since dimE = dimE∗∗)
and therefore σ(E∗, E) = σ(E∗, E∗∗).

The main result about compactness in the weak∗ topology is the famous

Theorem 7.21 (Banach-Alaoglu-Bourbaki). The closed unit ball

BE∗ := {f ∈ E∗| ‖f‖E∗ ≤ 1}

is compact in the weak∗ topology σ(E∗, E).

Note: This compactness property is the most essential property of the weak∗
topology!

Proof. We will reformulate the problem slightly: Consider the cartesian product

Y := FE = {maps ω : E → F} = (ω(x))x∈E with ω(x) ∈ F.

We equip Y with the standard product topology, i.e., the smallest topology on
Y such that the collection of maps

FE = Y 3 ω 7→ ω(x) ∈ F, x ∈ E

is continuous for all x ∈ E. This is the same as the topology of pointwise
convergence, i.e., (ωn)n ⊂ Y converges to ω if ∀x ∈ E,ωn(x) → ω(x) (see
Munkres: Topology, A First Course, Prentice Hall, 1975 or Dixmier: General
Topology, Springer 1984, or Knapp: Basic Real Analysis, Birkhäuser, 2005).
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A very useful fact on product topology:

Theorem (Tychonov’s theorem). An arbitrary product of compact spaces is
compact in the product topology.

Proof. See the above books.

Note: E∗ consists of very special maps from E to F, namely the continuous
linear maps. So we may consider E∗ as a subset of Y !

More precisely, let

Φ : E∗ → Y

be the canonical injection from E∗ to Y given by

Φ(f) := (Φ(f)x)x∈E = (f(x))x∈E .

Clearly, Φ is continuous from E∗ into Y . To see this, simply use Proposition
7.3 and note that for each fixed x ∈ E, the map

E∗ 3 f 7→ (Φ(f))x = f(x)

is continuous!

Since the inverse Φ−1 : Φ(E∗)→ E∗ is given by

ω 7→ (E 3 x 7→ Φ−1(ω)(x) := ω(x)),

one sees that Φ−1 : Y ⊃ Φ(E∗) → E∗ is also continuous when Y is given the
product topology. Indeed, using Proposition 7.3 again, it is enough to check,
for each fixed x ∈ E, that the map ω 7→ Φ−1(ω)(x) := ω(x)) is continuous on
Φ(E∗) ⊂ Y . But this is obvious, since Y is given the product topology, so if
ωn → ω in Y then ωn(x)→ ω(x) for all x ∈ E, so

Φ−1(ωn)(x) = ωn(x)→ ω(x) = Φ−1(ω)(x) as n→∞.

Upshot: Φ is a homeomorhism from E∗ onto Φ(E∗) ⊂ Y where E∗ is given
the weak∗ topology σ(E∗, E) and Y is given the product topology.

Note: Φ(BE∗) = K, where the set K ⊂ Y is given by

K = {ω ∈ Y | |ω(x)| ≤ ‖x‖E , ω is linear, i.e.,

ω(x+ y) = ω(x) + ω(y) and

ω(λx) = λω(x) ∀λ ∈ F, x, y ∈ E}.

Now we only have to check that K is a compact subset of Y!
We can write K = K1 ∩K2 where

K1 = {ω ∈ Y | |ω(x)| ≤ ‖x‖E ∀x ∈ E}

and

K2 := Φ(E∗) = {ω ∈ Y |ω is linear}.
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Note that K1 can be written as

K1 =
∏
x∈E

[−‖x‖, ‖x‖] ⊂ RE if F = R

or

K1 =
∏
x∈E
{z ∈ C| |z| ≤ ‖x‖} ⊂ CE if F = C

and by Tychonov’s theorem K1 is a compact subset of Y !
So we only have to show that K2 is closed (since the intersection of a closed

set and a compact set is compact!).
Let

Bx,y,λ1,λ2 := {ω ∈ Y |ω(λ1x+ λ2y)− λ1ω(x)− λ2ω(y) = 0}

which are closed subsets of Y , since if ωn ∈ Bx,y,λ1,λ2 then, if ωn → ω in Y ,
then

0 =ωn(λ1x+ λ2y)− λ1ωn(x)− λ2ωn(y)

→ ω(λ1x+ λ2y)− λ1ω(x)− λ2ω(y) as n→∞

so ω ∈ Bx,y,λ1,λ2
.

So

K2 :=
⋂

x,y∈E,λ1,λ2∈F
Bx,y,λ1,λ2

is closed in Y !
Hence K = K1 ∩ K2 is compact and so BE∗ = Φ−1(K) is compact in E∗

w.r.t σ(E∗, E).

7.5 Reflexive spaces

Definition 7.22. Let E be a Banach space and J : E → E∗∗ the canonical
injection from E into E∗∗ given by

(J(x))(f) := ϕx(f) := f(x) ∀x ∈ E, f ∈ E∗.

The space E is reflexive if J is surjective, i.e., J(E) = E∗∗.

Note: When E is reflexive, E∗∗ is usually identified with E!

Remark 7.23. (a) Finite-dimensional spaces are reflexive (since dimE = dimE∗ =
dimE∗∗).
Later we will see that Lp and lp are reflexive if 1 < p <∞.

(b) Every Hilbert space is reflexive.

(c) L1, L∞, l1 and l∞ are not reflexive.

C(K) = space of continuous functions on an infinite compact metric space K

is not reflexive.
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(d) It is essential to use the canonical injection J in the definition of reflexive
spaces. See R.C. James: A non-reflexive Banach space isometric with its
second conjugate, Proc. Nat. Acad. Sci USA 37 (1951), pp 174-177, for a
non-reflexive Banach space for which E is isometric to E∗∗.

Theorem 7.24 (Kakutani). Let E be a Banach space. Then E is reflexive if
and only if BE = {x ∈ E| ‖x‖ ≤ 1} is compact in the weak topology σ(E,E∗).

Proof. ”⇒“: Here J(B) = BE∗∗ by assumption. By Theorem 7.21 we know
that BE∗∗ is compact in the weak∗ topology σ(E∗∗, E∗). So it is enough to
check that J−1 : E∗∗ → E is continuous when E∗∗ is equipped with the weak∗
topology σ(E∗∗, E∗) and E is equipped with the weak topology σ(E,E∗).
But a map J−1 : E∗∗ → E is continuous when E is given the weak topology if
and only if ∀f ∈ E∗ the map ξ 7→ f(J−1(ξ)) is continuous.
Note that f(J−1(ξ)) = ξ(f), ξ ∈ E∗∗ but for fixed f the map E∗∗ 3 ξ 7→ ξ(f) is
continuous on E∗∗ with the weak∗ topology σ(E∗∗, E∗)! So J−1 is continuous
and BE = J−1(BE∗∗) is compact.
”⇐:“ We need the following two lemmata

Lemma 7.25. Let E be a Banach space, f1, . . . fk ∈ E∗ and γ1, . . . , γk ∈ F.
Then

(a) ∀ε ∃xε ∈ E with ‖xε‖ ≤ 1 and |fl(xε)− γ| < ε ∀l = 1, . . . , k

is equivalent to

(b) |
k∑
l=1

βlγl| ≤ ‖
k∑
l=1

βlfl‖ ∀β1, . . . , βk ∈ F.

Proof. Only for F = C.

”(a)⇒ (b)“: Fix β1, . . . , βk ∈ C, S :=
k∑
l=1

|βl|. By (a) we have

|
k∑
l=1

βlfl(xε)−
k∑
l=1

βlγl| ≤ εS

and hence

|
k∑
l=1

βlγl| ≤ |
k∑
l=1

βlfl(xε)|+ εS

≤ ‖
k∑
l=1

βlfl‖E∗‖xε‖E + εS ∀ε > 0.

”(b)⇒ (a)“: We will show that not (b)⇒ not (a):
Let γ = (γ1, . . . , γk) ∈ Ck and let ϕ : E → Ck be given by

ϕ(x) := (f1(x), f2(x), . . . , fk(x)).

Then (a) can be rephrased as follows

γ ∈ ϕ(BE) (closure in Ck)
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and not (a) means γ /∈ ϕ(BE), i.e., {γ} and ϕ(BE) can be striclty separated in
Ck by a hyperplane, i.e., there exist β = (β1, . . . , βk) ∈ Ck = (Ck)∗ and α ∈ R
such that for all x ∈ BE

Re(β(ϕ(x))) = Re(β · ϕ(x)) = Re

k∑
l=1

βlfl(x)

< α < Re(β · γ) = Re

k∑
l=1

βlγl.

Therefore (take sup over ‖x‖ ≤ 1)

‖
k∑
l=1

βlfl‖ ≤ α < Re

k∑
l=1

βlγl ≤ |
k∑
l=1

βlγl|,

i.e., not (b) is true!

Lemma 7.26. Let E be a Banach space. Then J(BE) is dense in BE∗∗ w.r.t.
the weak∗ topology σ(E∗∗, E∗) on E∗∗. Consequently, J(E) is dense in E∗∗

w.r.t. the weak∗ topology σ(E∗∗, E∗) on E∗∗.

Proof. Let ξ ∈ BE∗∗ and V be a neighborhood of ξ in σ(E∗∗, E∗). Need to show
V ∩ J(BE) 6= ∅. As usual, we may assume that V is of the form

V = {η ∈ E∗∗| |(η − ξ)(fj)| < ε, ∀j = 1, . . . , k}

for some f1, . . . fk ∈ E∗, ε > 0.
We have to find x ∈ BE with J(x) ∈ V , i.e.,

|fl(x)− ξ(fl)| < ε ∀l = 1, . . . k.

Set γl := ξ(fl). By Lemma 7.25 we need to check

|
k∑
l=1

βlγl| ≤ ‖
k∑
l=1

βlfl‖

but this is clear since

k∑
l=1

βlγl =

k∑
l=1

βlξ(fl) = ξ(

k∑
l=1

βlfl) (ξ ∈ E∗∗)

so

|
k∑
l=1

βlγl| = |ξ(
k∑
l=1

βlfl) ≤ ‖
k∑
l=1

βlfl‖E∗ ‖ξ‖E∗∗︸ ︷︷ ︸
≤1

.

Remark 7.27. J(BE) is always closed in BE∗∗ in the strong topology on E∗∗!
Indeed, if ξn = J(xn) → ξ then, since J is an isometry, xn must be Cauchy in
BE, so xn → x and ξ = J(x). Thus J(BE) is not dense in BE∗∗ in the strong
topology unless J(BE) = BE∗∗ , i.e., E is reflexive!
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Continuing the proof of Theorem 7.24 ”⇐“:
The canonical injection J : E → E∗∗ is always continuous from σ(E,E∗) into
σ(E∗∗, E∗) since for fixed f ∈ E∗, x 7→ (Jx)(f) = f(Jx) is continuous w.r.t.
σ(E,E∗). Assuming that BE is weakly compact (i.e., in σ(E,E∗) topology) we
see that J(BE) is compact and thus closed in E∗∗ w.r.t. σ(E∗∗, E∗).
But by Lemma 7.26, J(BE) is dense in BE∗∗ for the same topology! Therefore
J(BE) = BE∗∗ , hence J(E) = E∗∗, i.e., E is reflexive.

Theorem 7.28. Assume that E is a reflexive Banach space and (xn)n ⊂ E a
bounded sequence. Then there exists a subsequence (xnl

) that converges weakly.

Remark 7.29. A result of Eberlein-Šmulian says that if E is a Banach space
such that every bounded sequence has a weakly convergent subsequence then E
is reflexive! (See Holmes: Geometric Functional Analysis and its Applications,
Springer, 1975).

Proposition 7.30. Let E be a reflexive Banach space and M ⊂ E a closed
linear subspace of E. Then M is reflexive.

Proof. M , equipped with the norm from E has a-priori two distinct weak topolo-
gies:

(a) the topology induced by σ(E,E∗)

(b) its own weak topology σ(M,M∗).

Fact: these two topologies are the same since by Hahn-Banach, every continuous
linear functional on M is the restriction of a continuous linear functional on E!

By Theorem 7.24 we need to check that BM is compact in the weak topology
σ(M,M∗), or equaivalently, in the topology σ(E,E∗)! We know that BE is
compact in the weak topology and since M is (strongly) closed and convex it is
also weakly closed by Theorem 7.10. So BM = M ∩BE is weakly compact!

Corollary 7.31. A Banach space E is reflexive if and only if E∗ is reflexive.

Proof. ”⇒“: Roughly: E∗∗ = E ⇒ E∗∗∗ = E∗.
More precisely, let J : E → E∗∗ be the canonical isometry. Let ϕ ∈ E∗∗∗. The
map

x 7→ fϕ(x) := ϕ(J(x))

is a continuous linear functional on E, so f ∈ E∗.
Note:

ϕ(J(x)) = f(x) = (J(x))(f) ∀x ∈ E, J(x) ∈ E∗∗. (∗)

By assumption J : E → E∗∗ is surjective so for every ξ ∈ E∗∗ ∃x ∈ E, ξ = J(x).
So (∗) yields

ϕ(ξ) = ξ(f) ∀ξ ∈ E∗∗,

i.e., the canonical injection E∗ → E∗∗∗ is surjective.
”⇐“: Let E∗ be reflexive. By ”⇒“ above we know that E∗∗ is reflexive. Since
J(E) ⊂ E∗∗ is a closed subspace in the strong topology, Theorem 7.30 yields
that J(E) is reflexive. Thus E is reflexive!
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Corollary 7.32. Let E be a reflexive Banach space, K ⊂ E a bounded, closed
and convex subset. Then K is compact in the weak topology σ(E,E∗).

Proof. By Theorem 7.10 K is closed in the weak topology. Since K is bounded
there exists m ∈ N with K ⊂ mBE and mBE is weakly compact by Theorem
7.24. So K is a weakly closed subset of a weakly compact set and thus K is
weakly compact.

Corollary 7.33. Let E be a reflexive Banach space and let A ⊂ E be non-empty,
closed and convex. Let ϕ : A → (−∞,∞] be a convex lower semi-continuous
(l.s.c.) function such that ϕ 6≡ +∞ and

lim
x∈A,‖x‖→∞

ϕ(x) =∞ (no assumption if A is bounded). (∗∗)

Then ϕ achieves its minimum on A, i.e., there exists some x0 ∈ A such that

ϕ(x0) = inf
x∈A

ϕ(x).

Proof. Fix any a ∈ A such that ϕ(a) <∞ and define

Ã := {x ∈ A|ϕ(x) ≤ ϕ(a)}.

Then Ã is closed, convex and bounded (by (∗∗)) and thus compact in the weak
topology σ(E,E∗) by Corollary 7.32! By Corollary 7.13, ϕ is also l.s.c. in the
weak topology σ(E,E∗) (since ϕ is convex and strongly l.s.c).

Let (xn)n ⊂ Ã be a minimizing sequence in Ã (i.e., xn ∈ Ã, ϕ(xn) →
infx∈Ã ϕ(x)). Since Ã is weakly compact, (xn)n has a weakly convergent sub-
sequence, i.e.

x0 := weak− lim
j→∞

xnj exists

for some subsequence (xnj
)j of (xn). Since Ã is weakly closed it follows that

x0 ∈ Ã and by the weak l.s.c. property of ϕ we get

inf
x∈Ã

ϕ(x) ≤ ϕ(x0) ≤ lim inf
l→∞

ϕ(xnl
) = inf

x∈Ã
ϕ(x)

so ϕ(x0) = infx∈Ã ϕ(x).

If x ∈ A \ Ã, then

ϕ(x0) ≤ ϕ(a) < ϕ(x),

thus ϕ(x0) < ϕ(x) ∀x ∈ A.

Remark 7.34. Corollary 7.33 is the main reason why reflexive spaces and
convex functions are so important in many problems in the calculus of variations.

7.6 Separable spaces

Definition 7.35. A metric space E is separable if there exists a countable dense
subset D ⊂ E.
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Note: Many important spaces are separable. Finite-dimensional spaces are
separable, also Lp and lp, 1 ≤ p < ∞ are separable. C(K),K compact, is
separable, but L∞ and l∞ are not separable.

Proposition 7.36. Let E be a separable metric space and F ⊂ E any subset.
Then F is separable.

Proof. Let (un)n ⊂ E be a countable dense subset of E and rm > 0, rm → ∞
as m→∞. Choose any point am,n ∈ Brm(un)∩F whenever this is non-empty.
Then (am,n)m,n is countable and dense in F .

Theorem 7.37. Let E be a Banach space such that E∗ is separable. Then E
is separable.

Remark 7.38. The converse is not true! E.g., E = L1 is separable, but E∗ =
L∞ is not.

Proof. Let (fn)n∈N be countable and dense in E∗. Since ‖fn‖ := ‖fn‖E∗ :=
supx∈E,‖x‖E=1 |fn(x)|, there is some xn ∈ E such that

‖xn‖ = 1 and |fn(xn)| ≥ 1

2
‖fn‖. (∗)

Let L be the vector space over F generated by the (xn)n∈N (i.e., the set of finite
linear combinations of the xn).
Claim 1: L is dense in E.
Indeed, according to Remark 5.28 we have to check that any f ∈ E∗ which
vanishes on L must be identically zero.
Given ε > 0 ∃N ∈ N such that ‖f − fN‖ < ε. Then

‖f‖ ≤ ‖f − fN‖+ ‖fN‖.

Note that since f(xN ) = 0 (f vanishes on L) and (∗) we have

1

2
‖fN‖ ≤ ‖fN (xN )‖ = ‖(f − fN )(xN )‖ ≤ ‖f − fN‖‖xN‖ = ‖f − fN‖.

So

‖f‖ ≤ ‖f − fN‖+ 2‖f − fN‖ < 3ε

and since this holds for all ε > 0, ‖f‖ = 0, i.e., f ≡ 0.
If F = R, let L0 be the vector space over Q generated by the (xn)n. If F = C

let L0 be the vector space over Q + iQ generated by the (xn)n. I.e., the set of
all finite linear combinations with coefficients in Q, resp. in Q + iQ.

Then L0 is dense in L and hence dense in E (since L is dense in E by Claim
1).
Claim 2: L0 is countable!
Indeed, for n ∈ N let Λn be the vector space over Q, resp. over Q+iQ, generated
by (xk)1≤k≤n. Λn is countable and

L0 =
⋃
n∈N

Λn

is countable, as a countable union of countable sets.
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Corollary 7.39. Let E be a Banach space. Then E is reflexive and separable
if and only if E∗ is reflexive and separable.

Proof. We already know by Theorem 7.37 and Corollary 7.31 that

E∗reflexive and separable⇒ Ereflexive and separable.

Conversely, if E is reflexive and separable, then E∗∗ = J(E) is reflexive and
separable. Since E∗∗ = (E∗)∗, the ”⇒” direction applied to E∗ yields E reflexive
and separable.

There is also a connection between separability and metrizability of the weak
topologies.

Theorem 7.40. Let E be a separable Banach space. Then BE∗ is metrizable
in the weak∗ topology σ(E∗, E). Conversely, if BE∗ is metrizable in σ(E∗, E),
then E∗ is separable.

There is a dual statement.

Theorem 7.41. Let E be a Banach space such that E∗ is separable. Then BE
is metrizable in the weak topology σ(E,E∗). Conversely, if BE is metrizable in
σ(E,E∗), then E∗ is separable.

Proof of Theorem 7.40. Let (xn)n ⊂ BE be a dense countable subset of BE .
For f ∈ E∗ set

[f ] :=

∞∑
n=1

1

2n
|f(xn)|.

Then [·] is a norm on E∗ and [f ] ≤ ‖f‖E∗ (Why?). Put d(f, g) := [f − g]. We
have to show that the topology induced bu d on BE∗ is the same as the weak∗
topology σ(E∗, E) restricted to BE .
Step 1: Let f0 ∈ BE∗ and V a neighborhood of f0 in σ(E∗, E). Have to find
some r > 0 such that

Ur = {f ∈ BE∗ |d(f, f0) < r} ⊂ V.

As before, we can assume that V is of the form

V = {f ∈ BE∗ | |(f − f0)(yi)| < ε, ∀i = 1, . . . , k}

for some ε > 0, y1, . . . , yk ∈ E.
W.l.o.g., ‖yi‖ ≤ 1, i = 1, . . . , k.
Since (xn)n is dense in BE , we know that ∀i = 1, . . . , k,∃ni ∈ N such that

‖yi − xni
‖ < ε

4
.

Choose r > 0 small enough such that

2nir <
ε

2
, i = 1, . . . , k.
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Claim: Ur ⊂ V !
Indeed, if

r > d(f, f0) =

∞∑
n=1

1

2ni
|(f − f0)(xni

)|

then

1

2ni
|(f − f0)(xni)| < r, ∀i = 1, . . . , k.

Hence, for i = 1, . . . , k

|(f − f0)(yi)| = |(f − f0)(yi − xni) + (f − f0)(xni)|
≤ ‖f − f0‖︸ ︷︷ ︸

≤2

‖yi − xni‖︸ ︷︷ ︸
< ε

4

+ |(f − f0)(xni)|︸ ︷︷ ︸
< ε

2

< ε

so f ∈ V .
Step 2: Let f0 ∈ BE∗ . Given r > 0, we have to find some neighborhood V in
σ(E∗, E) such that

V ⊂ U = {f ∈ BE∗ | d(f, f0) < r}.

We choose V to be of the form

V := {f ∈ BE∗ | |(f − f0)(xi)| < ε} ∀i = 1, . . . , k

with ε and k to be determined so that V ⊂ U .
If f ∈ V , then

d(f, f0) =

∞∑
n=1

1

2n
|(f − f0)(xn)|

=

k∑
n=1

1

2n
|(f − f0)(xn)|︸ ︷︷ ︸

<ε

+

∞∑
n=k+1

1

2n
|(f − f0)(xn)|︸ ︷︷ ︸

≤2

< ε+ 2

∞∑
n=k+1

1

2n
= ε+

1

2k−1

so it is enough to take ε = r
2 and k ∈ N such that 1

2k−1 <
r
2 .

Conversely, suppose that BE∗ is metrizable in σ(E∗, E) and let us prove that
E is separable.
Set

Un := {f ∈ BE∗ | d(f, 0) <
1

n
}

and let Vn be a neighborhood of 0 in σ(E∗, E) such that Vn ⊂ Un. Again, we
may assume that Vn has the form

Vn := {f ∈ BE∗ | |f(x)| < εn ∀x ∈ Φn}
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with εn > 0 and Φn some finite subset of E. Set

D :=
⋃
n∈N

Φn

so that D is countable.
Claim: The vector space generated by D is dense in E (this implies E is sepa-
rable!).
Suppose f ∈ E∗ is such that f(x) = 0 ∀x ∈ D. Then f ∈ Vn ⊂ Un ∀n ∈ N.
Thus f ≡ 0 (i.e., span(D) is dense in E).

“Proof of Theorem 7.41”: The implication

E∗ separable ⇒ BE is metrizable in σ(E,E∗)

is exactly as above.
The proof of the converse is trickier (where does the above argument break
down?). See Dunford-Schwartz: Linear Operators, Interscience, 1972.

Corollary 7.42. Let E be a Banach space and (fn)n a bounded sequence in
E∗. Then there exists a subsequence (fnl

)l that converges in the weak∗ topology
σ(E∗, E).

Proof. W.l.o.g. ‖fn‖ ≤ 1 ∀n ∈ N. The set BE∗ is compact (by Banach-Alaoglu)
and metrizable (by Theorem 7.40) in the weak∗ topology σ(E∗, E). So every
sequence in BE∗ has a convergent subsequence!

Proof of Theorem 7.28. Let M0 = span(xn, n ∈ N) and M = M0. Clearly M
is separable and M ⊂ E is also reflexive (by Theorem 7.30). Thus BM = unit
ball in M is compact and metrizable in the weak topology σ(M,M∗), since
M∗ is separable (see Corollary 7.39 and Theorem 7.40). Hence there exists a
subsequence (xnl

)l which converges weakly w.r.t. σ(M,M∗) and hence (xnl
)l

converges weakly w.r.t. σ(E,E∗) also (see Proof of Theorem 7.30).

7.7 Uniformly convex spaces

Definition 7.43. A Banach space E is uniformly convex if ∀ε > 0∃δ > 0
such that

x, y ∈ E, ‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x− y‖ > ε ⇒
∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣ < 1− δ.

This is a geometric property of the unit ball. If one slides a ruler of length
ε > 0 in the unit ball, then its midpoint must stay within a ball of radius 1− δ
for some δ > 0, i.e., it measures how round the unit sphere is.

Example. (1) E = R2, ‖x‖2 = (x2
1 + x2

2)
1
2 is uniformly convex. Here the

curvature of the unit sphere is positive.
But

‖x‖1 = |x1|+ |x2| (Manhattan norm)

‖x‖∞ = max(|x1|, |x2|)

are not uniformly convex. They both have a flat surface!
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(2) Lp spaces are uniformly convex for 1 < p < ∞. Any Hilbert space is
uniformly convex.

Theorem 7.44. [Milman-Pettis) Every uniformly convex Banach space is re-
flexive.

Note:

• Uniform convexity is a geometric property of the norm, an equivalent
norm need not be uniformly convex.
Reflexivity is a topological property: a reflexive space remains reflexive
for an equivalent norm.
Thus Theorem 7.44 is somewhat surprising: a geometric property implies
a topological property.

• Uniform convexity is often used to prove reflexivity, but this is only suf-
ficient. There are (weird) reflexive Banach spaces that do not have any
uniformly convex equaivalent norm!

Proof. Assume E is a real Banach space. Let ξ ∈ E∗∗, ‖ξ‖ = 1 and J : E → E∗∗

be the canonical injection given by

J(x)(f) := f(x) ∀f ∈ E∗, x ∈ E.

Have to show: ξ ∈ J(BE).
Since J is an isometry, J(BE) ⊂ E∗∗ is closed in the strong topology on E∗∗.
So it is enough to show

∀ε > 0 ∃x ∈ BE such that ‖ξ − J(x)‖ ≤ ε. (∗)

Fix ε > 0 and let δ = δε > 0 be the modulus of uniform convexity. Choose some
f ∈ E∗ with ‖f‖ = 1 and

ξ(f) > 1− δ

2
(if E is real, otherwise work with Reξ(f)).

This is possible since ‖ξ‖ = 1.
Set

V := {η ∈ E∗∗| |(η − ξ)(f)| < δ

2

so ξ ∈ V ∈ σ(E∗∗, E∗).
Since J(BE) is dense in BE∗∗ w.r.t. weak∗ topology σ(E∗∗, E∗) thanks to
Lemma 7.26 we have V ∩J(BE) 6= ∅. Thus there is x ∈ BE such that J(x) ∈ V !
Claim: x satisfies (∗).
If not, then ‖ξ − J(x)‖ > ε, i.e.

ξ ∈ (J(x) + εBE∗∗)
c := W ∈ σ(E∗∗, E∗) (since BE∗∗ is closed in σ(E∗∗, E∗)).

Then, again by Lemma 7.26, it follows V ∩W ∩ J(BE) 6= ∅, i.e.

∃y ∈ BE such that J(y) ∈ V ∩W ⊂ V.
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Note: Since J(y) ∈W , we have ‖J(x)− J(y)‖ ≥ ε, and since J is isometric, we
must have

‖x− y‖ > ε. (∗∗)

Since J(x), J(y) ∈ V we have the inequalities

δ

2
> |(J(x)− ξ)(f)| = |f(x)− ξ(f)| ≥ ξ(f)− f(x)

δ

2
> |(J(y)− ξ)(f)| = |f(y)− ξ(f)| ≥ ξ(f)− f(y)

⇒ 2ξ(f) < f(x+ y) + 2δ ≤ ‖x+ y‖+ δ

or ∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣ > ξ(f)− δ

2
> 1− δ

2
− δ

2
= 1− δ.

But by uniform convexity, this means

‖x− y‖ < ε

contradicting (∗∗).

Proposition 7.45. Let E be a uniformly convex Banach space and (xn)n ⊂ E
with xn ⇀ x weakly in σ(E,E∗) and

lim sup ‖xn‖ ≤ ‖x‖. (I.20)

Then xn → x strongly.

Remark. We always have xn ⇀ x⇒ ‖x‖ ≤ lim inf ‖xn‖ (by Proposition 7.7),
so (I.20) says that the sequence ‖xn‖ does not loose “mass” as n→∞.

Proof. Assume x 6= 0 (otherwise trivial).
Idea: renormalize!
Set

λn := max(‖xn‖, ‖x‖), yn :=
1

λn
xn, y :=

x

‖x‖
, so ‖yn‖ ≤ 1, ‖y‖ = 1.

Note: yn → y strongly implies xn → x strongly (check this!).
Further note λn → λ and hence (since xn ⇀ x weakly), yn ⇀ y weakly (check
this!). Thus

yn + y

2
⇀ y

and by Proposition 7.7

1 = ‖y‖ =
∣∣∣∣∣∣y + y

2

∣∣∣∣∣∣ ≤ lim inf
∣∣∣∣∣∣yn + y

2

∣∣∣∣∣∣︸ ︷︷ ︸
≤ 1

2 (‖yn‖+‖y‖)≤1

⇒
∣∣∣∣∣∣yn + y

2

∣∣∣∣∣∣→ 1 as n→∞.

By the uniform convexity we get

‖yn − y‖ → 0 as n→∞,

i.e., yn → y strongly.
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8 Lp spaces

Some notation: (Ω,A, µ) measure space, i.e., Ω is a set and

(i) A is a σ-algebra in Ω: a collection of subsets of Ω (so A ⊂ P(Ω)) such that

(a) ∅ ∈ A

(b) A ∈ A⇒ Ac ∈ A

(c)
⋃∞
n=1An ∈ A whenever An ∈ A ∀n ∈ N

(ii) µ is a measure, i.e., µ : A→ [0,∞] with

(a) µ(∅) = 0

(b) µ(
⋃∞
n=1An) =

∞∑
n=1

µ(An) whenever (An)n ⊂ A are disjoint

We will also assume that

(iii) Ω is σ-finite, i.e., there exist Ωn ∈ A, n ∈ N which exhaust Ω, i.e.,⋃
n∈N Ωn = Ω, and µ(Ωn) <∞ ∀n ∈ N.

The sets N ∈ A such that µ(N) = 0 are called null sets.
A property holds almost everywhere (a.e.) or for almost all x ∈ Ω, if it holds

everywhere on Ω \N , where N is a null set.
See Bauer: Measure theory, 4th edition, and the handout for details on

measurable functions f : Ω→ R (or Ω→ C).
We denote by L1(Ω, µ) (or simply L1(Ω), or just L1) the space of integrable

function from Ω to R/C.
We often write

∫
f =

∫
fdµ =

∫
Ω

fdµ,

‖f‖1 = ‖f‖L1 =

∫
Ω

|f |dµ =

∫
|f |.

As usual, we identify functions which coincide a.e.!

8.1 Some results from integration everyone must know

Theorem (Monotone convergence, Beppo-Levi). Let (fn)n be a sequence of
non-negative functions in L1 which is increasing,

f1 ≤ f2 ≤ · · · ≤ fn ≤ fn+1 ≤ . . . a.e. on Ω,

and bounded, supn∈N
∫
fndµ <∞. Then

f(x) := lim
n→∞

fn(x)

exists a.e., f ∈ L1, and ‖f − fn‖L1 → 0.

Theorem (Dominated convergence, Lebesgue). Let (fn)n ⊂ L1 be such that

(a) fn(x)→ f(x) a.e. on Ω
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(b) there exists g ∈ L1 such that for all n ∈ N

|fn(x)| ≤ g(x) a.e.

Then f ∈ L1 and ‖fn − f‖1 → 0.

Lemma (Fatou). Let (fn)n ⊂ L1 with

(a) ∀n ∈ N : fn(x) ≥ 0 a.e.

(b) supn∈N
∫
fndµ <∞

Set f(x) := lim infn→∞ fn(x) ≤ ∞. Then f ∈ L1 and∫
fdµ ≤ lim inf

n∈N

∫
fndµ.

Basic example: Ω = Rd,A = Borel-measurable sets (or Lebesgue-measurable

sets) and µ = Lebesgue measure on Rd.
Notation: Cc(Rd) = space of continuous functions on Rd with compact sup-

port, i.e.,

Cc(Rd) = {f ∈ C(Rd)|∃K ⊂ Rd compact such that f(x) = 0 ∀x ∈ Kc}.

Theorem (Density). Cc(Rd) is dense in L1(Rd), i.e., ∀f ∈ L1(Rd)∀ε > 0 ∃g ∈
Cc(Rd) with ‖f − g‖1 < ε.

The case of product measures (and spaces): (Ω,A1, µ1), (Ω,A2, µ2) two σ-
finite measure spaces

Ω := Ω1 × Ω2

A = A1 ⊗A2

µ = µ1 ⊗ µ2 by µ(A1 ×A2) := µ1(A1) · µ2(A2) ∀A1 ∈ A1, A2 ∈ A2.

Theorem (Tonelli). Let F (= F (x, y)) : Ω1 × Ω2 → [0,∞] be measurable and

(a)
∫

Ω2

F (x, y)dµ2 <∞ a.e. in Ω1,

(b)
∫

Ω1

( ∫
Ω2

F (x, y)dµ2

)
dµ1 <∞.

Then F ∈ L1(Ω1 × Ω2, µ1 ⊗ µ2) and∫
Ω1

(∫
Ω2

F (x, y)dµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

F (x, y)dµ1

)
dµ2

=

∫ ∫
Ω1×Ω2

F (x, y)d(µ1 ⊗ µ2).

Theorem (Fubini). If F ∈ L1(Ω1 × Ω2), i.e.,∫
Ω1×Ω2

|F (x, y)|d(µ1 ⊗ µ2) <∞,

then
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(a) for a.e. x ∈ Ω1 : F (x, ·) ∈ L1(Ω2) and
∫

Ω2

F (x, y)dµ2 ∈ L1
x(Ω1)

(b) for a.e. y ∈ Ω2 : F (·, y) ∈ L1(Ω1) and
∫

Ω1

F (x, y)dµ1 ∈ L1
y(Ω2)

Moreover ∫
Ω1

(∫
Ω2

F (x, y)dµ2

)
dµ1 =

∫
Ω2

(∫
Ω1

F (x, y)dµ1

)
dµ2

=

∫ ∫
Ω1×Ω2

F (x, y)dµ1dµ2.

8.2 Definition and some properties of Lp spaces

Definition 8.1. • 1 ≤ p <∞:

Lp = Lp(Ω,F) := {f : Ω→ F|f is measurable and |f |p ∈ L1},

‖f‖p := ‖f‖Lp :=
(∫

Ω

|f(x)|pdµ
) 1

p

.

• p =∞:

L∞ = L∞(Ω,F) := {f : Ω→ F|f is measurable and there exists a constant C <∞
such that |f(x)| ≤ Ca.e. on Ω},

‖f‖∞ := ‖f‖L∞ := inf(C| |f(x)| ≤ Ca.e. on Ω} =: esssupx∈Ω|f(x)|.

Remark. If f ∈ L∞ then

|f(x)| ≤ ‖f‖∞ a.e. on Ω.

Indeed, by definition of ‖f‖∞, there exists Cn ↘ ‖f‖∞ (e.g. Cn = ‖f‖∞ + 1
n)

such that

|f(x)| ≤ Cn a.e. on Ω,

i.e., ∃Nn such that |f(x)| ≤ Cn ∀x ∈ Ω \Nn and µ(Nn) = 0.
Set N :=

⋃
nNn and note

µ(N) ≤
∑
n∈N

µ(Nn) = 0

and for all n ∈ N :

|f(x)| ≤ Cn ∀x ∈ Ω \N

⇒ |f(x)| ≤ ‖f‖∞ ∀x ∈ Ω \N.
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Notation: If 1 ≤ p ≤ ∞, then p′ given by 1
p + 1

p′ = 1 is the dual exponent
of p.

Theorem 8.2 (Hölder). Let f ∈ Lp and g ∈ Lp
′

with 1 ≤ p ≤ ∞. Then
fg ∈ L1 and

‖fg‖1 ≤ ‖f‖p‖g‖p′ .

Proof. Obvious for p = 1 or p =∞.
So assume 1 < p <∞, and note that for all a, b ≥ 0

ab =
1

p
ap + ab− 1

p
ap

≤ 1

p
ap + sup

b≥0
(ab− 1

p
ap)

=
1

p
ap +

1

p′
bp
′

( also called Young’s inequality)

Thus

|f(x)g(x)| ≤ 1

p
|f(x)|p +

1

p′
|g(x)|p

′
a.e.

∈ L1 since f ∈ Lp, g ∈ Lp
′
.

Moreover, ∫
|fg|dµ ≤ 1

p
‖f‖pp +

1

p′
‖g‖p

′

p′ .

So for λ > 0, ∫
|fg|dµ =

∫
|λf 1

λ
g|dµ ≤ 1

p
‖λf‖pp +

1

p′
‖λ−1g‖p

′

p′

=
λp

p
‖f‖pp +

λ−p
′

p′
‖g‖p

′

p′ = h(λ).

Minimizing over λ > 0 yields the claim, since

inf
λ>0

h(λ) = ‖f‖p‖g‖p′ (check this!)

Remark. There is a very useful extension of Hölder in the form: If f1, f2, . . . , fk
are such that fj ∈ Lpj for 1 ≤ j ≤ k and 1

p =
∑k
j=1

1
pj

, then f = f1 ·f2 · . . . fk ∈
Lp and

‖f‖p ≤
k∏
j=1

‖fj‖pj .

In particular, if f ∈ Lp ∩ Lq for some 1 ≤ p ≤ q ≤ ∞, then f ∈ Lr for all
p ≤ r ≤ q and

‖f‖r ≤ ‖f‖θp‖g‖1−θq with
1

r
=
θ

p
+

1− θ
q

, 0 ≤ θ ≤ 1.
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Theorem 8.3. Lp is a vector space and ‖ · ‖p is a norm for any 1 ≤ p ≤ ∞.

Proof. The cases p = 1 and p =∞ are easy, so assume 1 < p <∞.
If f, f ∈ Lp, then

|f + g|p ≤ (|f |+ |g|)p ≤ (2 max(|f |, |g|))p

= 2p max(|f |p, |g|p) ≤ 2p(|f |p + |g|p) ∈ Lp.

Moreover,

‖f + g‖pp =

∫
|f + g|p−1|f + g|dµ

≤
∫
|f + g|p−1|f |dµ+

∫
|f + g|p−1|g|dµ. (∗)

Note that p′ = p
p−1 , so

(
|f + g|p−1

)p′
= |f + g|p ∈ L1

so |f + g|p−1 ∈ Lp′ and by Hölder, (∗) yields

‖f + g‖pp ≤ ‖|f + g|p−1‖p′(‖f‖p + ‖g‖p) = ‖f + g‖p−1
p (‖f‖p + ‖g‖p).

Since ‖f + g‖p ≤ ∞, this yields

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Theorem 8.4 (Fischer-Riesz). Lp is a Banach space for 1 ≤ p ≤ ∞.

Proof. We distinguish the cases p =∞ and 1 ≤ p <∞.
Case 1: p = ∞: Let (fn)n ⊂ L∞ be Cauchy. Given k ∈ N ∃Nk ∈ N such that
‖fm − fn‖∞ ≤ 1

k for m,n ≥ Nk. Hence there exists a set Ek ⊂ Ω, µ(Ek) = 0,
such that

|fm(x)− fn(x)| ≤ 1

k
∀x ∈ Ω \ Ek and all m,n ≥ Nk.

Put E :=
⋃
k∈NEk, note µ(E) = 0 and

∀x ∈ Ω \ E : |fm(x)− fn(x)| ≤ 1

k
for all m,n ≥ Nk, (∗)

that is, the sequence (fn(x))n is Cauchy (in R). So

f(x) := lim
n→∞

fn(x)

exists for all x ∈ Ω \ E and we simply set f(x) := 0 for x ∈ E.
Letting m→∞ in (∗), we also see

|f(x)− fn(x)| ≤ 1

k
∀x ∈ Ω \ E and all n ≥ Nk.
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So

|f(x)| ≤ |f(x)− fn(x)|︸ ︷︷ ︸
≤ 1

k

+ fn(x)︸ ︷︷ ︸
≤‖fn‖∞

for a.a. x ∈ Ω.

Hence f ∈ L∞ and ‖f − fn‖∞ ≤ 1
k for all n ≥ Nk. Thus fn → f in L∞!

Case 2: 1 ≤ p <∞:
Step 1: Let (fn)n ⊂ Lp be Cauchy. It is enough to show that there is a subse-
quence (fnl

)l that converges to some f ∈ Lp. Indeed, assume that fnl
→ f in

Lp. Then

‖f − fm‖p ≤ ‖f − fnl
‖p + ‖fnl

− fm‖p,

so if ε > 0 there exists N1 ∈ N such that

‖f − fnl
‖p <

ε

2
∀l ≥ N1

and there exists N2 ∈ N such that

‖fn − fm‖p <
ε

2
∀m,n ≥ N2.

Note that nl ≥ n (because of subsequence) so

‖fnl
− fm‖p <

ε

2
∀l,m ≥ N2.

Hence for l ≥ max(N1, N2) one has

‖f − fm‖p ≤ ‖f − fnl
‖p + ‖fnl

− fm‖p <
ε

2
+
ε

2
= ε ∀m ≥ N1,

i.e., f, → f in Lp.
Step 2: There exists a subsequence (fnl

) which converges in Lp.
Extract a subsequence (fnl

) such that

‖fnl+1
− fnl

‖p ≤
1

2l
∀l ∈ N.

(To see that this exists proceed inductively: Choose n1 ∈ N such that ‖fm −
fn‖p < 1

2 ∀m,n ≥ n1. Then choose n2 ≥ n1 such that ‖fm−fn‖p < 1
22 ∀m,n ≥

n2, etc.).
Claim: fnl

converges to some f in Lp. Indeed, writing fl instead of fnl
, we have

‖fl+1 − fl‖p <
1

2l
∀l ∈ N.

Set

gn(x) :=

n∑
l=1

|fl+1(x)− fl(x)|

and note that the sequence (gn)n is increasing. Also note that

‖gn‖p ≤
n∑
l=1

‖fl+1 − fl‖p <
n∑
l=1

1

2l
<

∞∑
l=1

1

2l
= 1.
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So

sup
n
‖gn‖p ≤ 1

and hence, by monotone convergence, gn(x) converges to a finite limit, say

g(x) = lim
n→∞

gn(x) = sup
n
gn(x) for a.a. x.

If m,n ≥ 2, then

|fm(x)− fn(x)| ≤ |fm(x)− fm−1(x)|+ · · ·+ |fn+1(x)− fn(x)|
≤ g(x)− gn−1(x)→ 0 a.e.

So for a.e. x, (fn(x))n is Cauchy and converges to some finite limit, denoted by
f(x), say. Letting m→∞, we also see, for a.e. x,

|f(x)− fn(x)| ≤ g(x)− gn−1(x) ≤ g(x) for n ≥ 2.

In particular, f ∈ Lp and, since gp ∈ L1 and f(x)− fn(x)→ 0 a.e. as n→∞,
we can also apply dominated convergence to see

‖f − fn‖p → 0 as n→∞.

8.3 Reflexivity, Separability. The Dual of Lp

We will consider the three cases

(A) 1 < p <∞

(B) p = 1

(C) p =∞

(A) Study of Lp for 1 < p <∞.

This is the most favorable case: Lp is reflexive, separable, and the dual of
Lp is Lp

′
.

Theorem 8.5. Lp is reflexive for 1 < p <∞.

Proof. Step 1: (Clarkson’s first inequality) Let 2 ≤ p <∞. Then∣∣∣∣∣∣f + g

2

∣∣∣∣∣∣p
p

+
∣∣∣∣∣∣f − g

2

∣∣∣∣∣∣p
p
≤ 1

2
(‖f‖pp + ‖g‖pp) ∀f, g ∈ Lp. (1)

Proof of (1). Enough to show∣∣∣a+ b

2

∣∣∣p +
∣∣∣a− b

2

∣∣∣p ≤ 1

2
(|a|p + |b|p) ∀a, b ∈ R.

Note that

αp + βp ≤ (α2 + β2)
p
2 ∀α, β ≥ 0. (2)
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Indeed, if β > 0, then (2) is equivalent to(α
β

)p
+ 1 ≤

((α
β

)2

+ 1
) p

2

(3)

and the function (x2 + 1)
p
2 − xp − 1 increases on [0,∞) and equals 0 at

x = 0, so

(x2 + 1)
p
2 − xp − 1 ≥ 0 ∀x ≥ 0.

Hence (3) and thus (2) hold.

Now choose α =
∣∣∣a+b

2

∣∣∣, β =
∣∣∣a−b2

∣∣∣ in (2) to see

∣∣∣a+ b

2

∣∣∣p +
∣∣∣a− b

2

∣∣∣p ≤ (∣∣∣a+ b

2

∣∣∣2 +
∣∣∣a− b

2

∣∣∣2) p
2

=
(a2 + b2

2

) p
2 ≤ 1

2
(ap + bp),

where in the last inequality we used the convexity of the function x 7→ x
p
2

for p ≥ 2.

Step 2: Lp is uniformly convex, and thus reflexive, for 2 ≤ p <∞.
Indeed, let f, g ∈ Lp, ‖f‖p ≤ 1, ‖g‖p ≤ 1 and ‖f − g‖ ≥ ε. Then from (1)
we get ∣∣∣∣∣∣f + g

2

∣∣∣∣∣∣p
p
≤ 1

2
(‖f‖pp + ‖g‖pp)−

∣∣∣∣∣∣f − g
2

∣∣∣∣∣∣p
p
≤ 1−

(ε
2

)p

⇒
∣∣∣∣∣∣f + g

2

∣∣∣∣∣∣
p
≤
(

1−
(ε

2

)p) 1
p

= 1−
(

1−
(

1−
(ε

2

)p) 1
p
)

︸ ︷︷ ︸
=δε>0

.

So Lp, 2 ≤ p < ∞, is uniformly convex and hence reflexive by Theorem
7.44.
Step 3: Lp is reflexive for 1 < p ≤ 2.

Indeed, let 1 < p < ∞ and consider T : Lp → (Lp
′
)∗, 1

p + 1
p′ = 1, defined

as follows: given u ∈ Lp, the mapping

Lp
′
3 f 7→

∫
ufdµ

is a continuous linear functional on Lp
′

(by Hölder) and thus defines an
element Tu ∈ (Lp

′
)∗ such that

(Tu)(f) =

∫
ufdµ ∀f ∈ Lp

′
.

Claim:

‖Tu‖(Lp′ )∗ = ‖u‖Lp ∀u ∈ Lp.
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Proof. By Hölder

|Tu(f)| = |
∫
ufdµ| ≤

∫
|u||f |dµ ≤ ‖u‖p‖f‖p′ ∀f ∈ Lp

′

so

‖Tu‖(Lp′ )∗ = sup
‖f‖p=1

|
∫
ufdµ| ≤ ‖u‖p.

On the other hand, given u ∈ Lp, we set

f0(x) :=

{
λ|u(x)|p−2u(x), if u(x) 6= 0

0, else

and note that, since p′ = p
p−1 ,∫

|f0(x)|p
′
dµ = λp

′
∫

(|u|p−1)p
′
dµ = λp

′
∫
|u|pdµ = λp

′
‖u‖pp

so

‖f0‖p′ = λ‖u‖p−1
p = 1 if λ =

1

‖u‖p−1
p

.

With this choice of f , we have

‖Tu‖(Lp′ )∗ ≥ |Tu(f0)| = ‖u‖p

so the claim follows and T : Lp → (Lp
′
)∗ is an isometry!. Since Lp is a

Banach space, we see that T (Lp) is a closed subspace of (Lp
′
)∗.

Now assume 1 < p ≤ 2. Since 2 < p′ < ∞, we know from Step 2, that
Lp
′

is reflexive. Since a Banach space E is reflexive if and only if its dual
E∗ is reflexive, we see that (Lp

′
)∗ is also reflexive and since every closed

subspace of a reflexive space is also reflexive, we see that T (Lp) is reflexive
and thus Lp too.

Remark. Lp is also uniformly convex for 1 < p ≤ 2 due to Clarkson’s
second inequality∣∣∣∣∣∣f + g

2

∣∣∣∣∣∣p′
p

+
∣∣∣∣∣∣f − g

2

∣∣∣∣∣∣p′
p
≤
(1

2
(‖f‖pp + ‖g‖pp)

) 1
p−1

which is trickier to prove than his first inequality.

Theorem 8.6 (Riesz representation theorem). Let 1 < p < ∞ and φ ∈
(Lp)∗. Then there exists a unique u ∈ Lp′ such that

φ(f) =

∫
ufdµ.

Moreover,

‖u‖p′ = ‖φ‖(Lp)∗ .
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Remark. Theorem 8.6 is extremely important! It says that every con-
tinuous linear functional on Lp with 1 < p < ∞ can be represented in a
“concrete way” as an integral. The mapping φ 7→ u is linear and surjective
and allows us to identify the abstract space (Lp)∗ with Lp

′
! It is the sole

reason why one always makes identification (Lp)∗ = Lp
′

for 1 < p <∞.

Proof. Consider T : Lp
′ → (Lp)∗ defined by

Tu(f) :=

∫
ufdµ ∀u ∈ Lp

′
, f ∈ Lp

and note that by Step 3 in the proof of Theorem 8.5 one has

‖Tu‖(Lp)∗ = ‖u‖p′ ∀u ∈ Lp
′
.

So we only have to check that T is surjective. Indeed, let E = T (Lp
′
) which

is a closed subspace of (Lp)∗. So it is enough to show that E is dense in
(Lp)∗. For this, let h ∈ (Lp)∗∗ satisfy

h(φ) = 0 ∀φ ∈ E,

i.e., h(Tu) = 0 ∀u ∈ Lp′ . Since Lp is reflexive, h ∈ Lp and

h(Tu) = Tu(h) =

∫
uhdµ.

So we have ∫
uhdµ = 0 ∀u ∈ Lp

′
.

Choosing

u = |h|p−2h̄ ∈ Lp
′

one sees

0 =

∫
uhdµ =

∫
|h|pdµ

so h = 0. Hence every continuous linear functional on E ⊂ (Lp)∗ vanishes
on (Lp)∗, so E is dense in (Lp)∗.

Theorem 8.7. The space Cc(Rd) is dense in Lp(Rd) for every 1 ≤ p <∞.

Some notations:

• Truncation operator Tn : R→ R,

Tn(r) :=

{
r, if |r| ≤ n,
nr
|r| , if |r| > n.

• Characteristic function: for E ⊂ Ω let

1lE(x) =

{
1, if x ∈ E,
0, else.
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Proof of Theorem 8.7. Step 1: Lp ∩ L∞c is dense in Lp. (L∞c = bounded
functions with compact support).
Indeed, let f ∈ Lp. Put

gn := 1lBn
Tn(f) ∈ L∞c ,

where Bn = Bn(0) = {x ∈ Rd| |x| < n}. Since |gn| ≤ |f | ∈ Lp ∀n and
gn → f a.e., Dominated convergence yields

‖gn − f‖p → 0 as n→∞.

Step 2: Cc(Rd) is dense in Lp ∩ L∞c w.r.t. ‖ · ‖p.
Indeed, let f ∈ Lp ∩L∞c . Since f is bounded and has compact support, we
have f ∈ L1 also. Let ε > 0. By density of Cc(Rd) in L1, for any δ > 0
there exists g ∈ Cc(Rd) such that

‖f − g‖1 < δ.

W.l.o.g., we may assume that ‖g‖∞ ≤ ‖f‖∞, otherwise simply replace g
by Tn(g) with n = ‖f‖∞.
Now note

‖f − g‖p ≤ ‖f − g‖
1
p

1 ‖f − g‖
1− 1

p
∞ ≤ δ

1
p (2‖f‖∞)1− 1

p .

Choosing δ so small that δ
1
p (2‖f‖∞)1− 1

p < ε we see

‖f − g‖p < ε.

Theorem 8.8. Lp(Rd) is separable for any 1 ≤ p <∞.

Remark. As a consequence, Lp(Ω) is separable for any measurable subset
Ω ⊂ Rd. Indeed, let I be the canonical isometry from Lp(Ω) into Lp(Rd)
by extending a function f : Ω→ F to Rd by setting it zero outside Ω. Then
Lp(Ω) may be identified with a subspace of Lp(Rd), hence Lp(Ω) is also
separable, whenever Lp(Rd) is! (see Theorem 7.36).

Proof of Theorem 8.8. Let R be the countable family of sets of the form

R =

d∏
k=1

(ak, bk), ak, bk ∈ Q

and E = vector space over Q (or Q + iQ) generated by the functions
(1lR)R∈R. So E is countable, since E consists of finite linear combinations
with rational coefficients of functions 1lR.
Claim: E is dense in Lp(Rd).
Indeed, given f ∈ Lp(Rd), ε > 0 ∃f1 ∈ Cc(Rd) such that ‖f − f1‖p < ε

2 .
Let R ∈ R be any cube such that supp(f) ⊂ R.
Subclaim: Given any δ > 0, there exists a function f2 ∈ E such that
‖f1 − f2‖p < δ and supp(f2) ⊂ R.
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Indeed, simply split R into small cubes in R where the oscillation (sup− inf)
of f1 is less than δ. Then

‖f1 − f2‖p ≤ ‖f1 − f2‖∞|R|
1
p < δ|R|

1
p ,

where |R| = volume of R. By choosing δ > 0 such that δ|R|
1
p < ε

2 we have

‖f − f2‖p ≤ ‖f − f1‖p + ‖f1 − f2‖p < ε

and f2 ∈ E.

(B) Study of L1.
The dual space to L1 is described in

Theorem 8.9 (Riesz representation theorem). Let φ ∈ (L1)∗. Then there
exists a unique function u ∈ L∞ such that

φ(f) =

∫
ufdµ ∀f ∈ L1.

Moreover

‖u‖∞ = ‖φ‖(L1)∗ .

Remark. Again, Theorem 8.9 allows us to identify every abstract contin-
uous linear functional φ ∈ (L1)∗ with a concrete integral. The mapping
φ 7→ u, which is a linear surjective isometry allows to identify the ab-
stract space (L1)∗ with L∞. Therefore, one usually makes the identification
(L1)∗ = L∞.

Proof. Recall that we assume that Ω is σ-finite, i.e., there exists a sequence
Ωn ⊂ Ω of measurable sets such that Ω =

⋃
n Ωn and µ(Ωn) < ∞ ∀n. Set

χn := 1lΩn
.

Uniqueness of u: Suppose u1, u2 ∈ L∞ satisfy

φ(f) =

∫
u1fdµ =

∫
u2fdµ ∀f ∈ L1.

Then u = u1 − u2 satisfies∫
ufdµ = 0 ∀f ∈ L1. (∗)

Let

sign u =

{
ū
|u|2 , if u 6= 0,

0, if u = 0,

and choose f = 1lnsign u in (∗). Then∫
Ωn

|u|dµ = 0 ∀n
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so u = 0 on Ωn, hence u = 0.
Existence of u: Step 1: There is a function θ ∈ L2 such that

θ(x) ≥ εn > 0 ∀x ∈ Ωn ∀n.

Indeed, let θ = α1 on Ω1, θ = α2 on Ω2 \ Ω1, . . . , θ = αn on Ωn \ Ωn−1,
etc. and adjust the constants αn > 0 so that θ ∈ L2.
Step 2: Given θ ∈ (L1)∗, the mapping

L2 3 f 7→ φ(θf)

defines a continuous linear functional on L2! So by the Riesz representation
theorem for L2, there exists a function v ∈ L2 such that

φ(θf) =

∫
vfdµ ∀f ∈ L2. (∗∗)

Set u(x) := v(x)
θ(x) (well-defined since θ > 0 on Ω). Note that u is measurable

and, with χn := 1lΩn
, we have uχn ∈ L2 ∀n.

Claim: u has all the required properties.
Choosing f = χn

g
θ ∈ L

2 for g ∈ L∞ in (∗∗) we have

φ(χng) =

∫
uχngdµ ∀g ∈ L∞. (∗ ∗ ∗)

Claim: u ∈ L∞ and ‖u‖∞ ≤ ‖φ‖(L1)∗ .

Proof. Fix C > ‖φ‖(L1)∗ and set

A := {x ∈ Ω| |u(x)| > C}.

We need to show that µ(A) = 0.
Choosing g = χAsign u in (∗ ∗ ∗), we see∫

A∩Ωn

|u|dµ =

∫
uχngdµ = φ(χng)

≤ ‖φ‖(L1)∗‖χng‖1
= ‖φ‖(L1)∗µ(A ∩ Ωn).

Note that |u| > C on A, so∫
A∩Ωn

|u|dµ ≥ C
∫

A∩Ωn

dµ = Cµ(A ∩ Ωn)

and thus

Cµ(A ∩ Ωn) ≤ ‖φ‖(L1)∗µ(A ∩ Ωn),

so, since C > ‖φ‖(L1)∗ , we must have

µ(A ∩ Ωn) = 0 ∀n
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and since A = A ∩
(⋃

n Ωn

)
=
⋃
nA ∩ Ωn

µ(A) = µ(
⋃
n

A ∩ Ωn) ≤
∑
n

µ(A ∩ Ωn) = 0.

So A is a null set and ‖u‖∞ ≤ ‖φ‖(L1)∗ .

Claim:

φ(h) =

∫
uhdµ ∀h ∈ L1. (∗ ∗ ∗∗)

Indeed, choose g = Tnh in (∗ ∗ ∗) and note that χnTnh→ h in L1.
Claim:

‖φ‖(L1)∗ = ‖u‖∞.

Indeed, by (∗ ∗ ∗∗) one sees

|φ(h)| ≤ ‖u‖∞‖h‖1 ∀h ∈ L1

so ‖φ‖(L1)∗ ≤ ‖u‖∞.

Remark 8.10. The space L1 is never reflexive, except in the trivial case
where Ω consists of a finite number of atoms. Then L1 is finite-dimensional!
Indeed, assume that L1 is reflexive and consider two cases

(i) ∀ε > 0 ∃Aε ⊂ Ω measurable with 0 < µ(Aε) < ε.

(ii) ∃ε > 0 such that µ(A) ≥ ε for every measurable set A ⊂ Ω with
µ(A) > 0.

In case (i) there exists a decreasing sequence An of measurable sets such
that

0 < µ(An)→ 0 as n→∞.

(Choose first any sequence Bn such that

0 < µ(Bn) < 2−n

and set An :=
⋃∞
k=nBk. )

Let χn := 1lAn
and set

u =
χn
‖χn‖1

.

Since ‖u‖1 = 1 and since we assume that L1 is reflexive, Theorem 7.28
applies and gives us a subsection (which we still denote by (un)n) and
u ∈ L1 such that un ⇀ u weakly in L1, i.e.,∫

unφdµ→
∫
uφdµ ∀φ ∈ L∞.
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Moreover, for fixed j and n > j we have∫
Aj

undµ =

∫
unχjdµ = 1

so letting n→∞, we have∫
Aj

udµ =

∫
uχjdµ = lim

n→∞

∫
unχjdµ = 1 ∀j ∈ N.

But, by dominated convergence, we have∫
uχjdµ→ 0 as j →∞

which is a contradiction. So L1 is not reflexive.
In case (ii) the space Ω is purely atomic and consists of a countable number
of distinct atoms (an), unless there are only finitely many atoms. In this
case, L1 is isomorphic to l1(N) and we need only to show that l1 is not
reflexive. Consider the canonical basis

en = (0, . . . , 0, 1︸︷︷︸
n−th slot

, 0, . . . ).

Assuming that l1 is reflexive, there exists a subsequence (enk
) and some

x ∈ l1 such that enk
⇀ x in the weak topology σ(l1, l∞), i.e.

(ϕ, enk
)︸ ︷︷ ︸

=
∑
ϕ(j)enk

(j)

→ (ϕ, x) ∀ϕ ∈ l∞.

Choosing ϕ = ϕj = (0, 0, . . . , 0, 1︸︷︷︸
j−th slot

, 1, . . . ) we get

(ϕj , x) = lim
k→∞

(ϕj , enk
)︸ ︷︷ ︸

=1 ∀k≥j

= 1

but

(ϕj , x) =
∑
n≥j

x(j)→ 0 as j →∞,

since x ∈ l1, a contradiction.

(C) Study of L∞.
This is more complicated and we will not give a full answer. We already
know L∞ = (L1)∗ by Theorem 8.9. Being a dual space, L∞ has some nice
properties, in particular

• The closed unit ball BL∞ is compact in the weak∗ topology σ(L∞, L1)
by Theorem 7.2.
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• If Ω ⊂ Rd is measurable and (fn)n is a bounded sequence in L∞(Ω),
there exists a subsequence (fnk

)k and some f ∈ L∞ such that fnk
⇀ f

in the weak∗ topology σ(L∞, L1). This is a consequence of Corollary
7.42 which applies, since L∞ is the dual space of the separable space
L1.

However, L∞ is not reflexive, except in the case where Ω consists of a finite
number of points, since otherwise L1(Ω) were reflexive (since a Banach
space E is reflexive if and only if E∗ is reflexive), and we know by the
previous discussion that L1 is not reflexive (Remark 8.10)! Thus, the dual
space (L∞)∗ contains L1, since L∞ = (L1)∗, and (L∞)∗ is striclty bigger
than L1. Thus there are continuous linear functionals φ on L∞ which
cannot be represented as

φ(f) =

∫
ufdµ ∀f ∈ L∞ and some u ∈ L1.

Example. Let φ0 : Cc(Rd)→ R (or C) be defined by

φ0(f) := f(0) ∀f ∈ Cc(Rd).

This is a continuous linear functional on Cc(Rd) ⊂ L∞(Rd) and by Hahn-
Banach, we may extend φ0 to a continuous linear functional φ on L∞(Rd)
and

φ(f) = f(0) ∀f ∈ Cc(Rd).

BUT there is no u ∈ L1 such that

φ(f) =

∫
ufdµ ∀f ∈ L∞. (∗)

Assuming that such a function u ∈ L1 exists, we get from (∗) that∫
ufdx = 0 ∀f ∈ Cc(Rd), f(0) = 0.

By some result from measure theorey, this implies that u = 0 a.e. on
Rd \ {0}, hence u = 0 a.e. on Rd, but then

φ(f) =

∫
ufdµ = 0 ∀f ∈ L∞,

a contradicion.

Remark. In fact, the dual space of L∞ is the space of (complex valued)
Radon measures.

Theorem 8.11. L∞(Rd) is not separable. (In fact, L∞(Ω) is not separa-
ble, except if Ω consists of a finite number of atoms).

Lemma 8.12. Let E be a Banach space. Assume that there exists a family
(Oi)i∈I ⊂ E such that

(a) ∀i ∈ I,Oi 6= ∅ is open
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(b) Oi ∩ Oj = ∅ if i 6= j

(c) I is uncountable

Then E is not separable!

Proof. Suppose that E is separable and let (un)n∈N be a dense countable
set in E. For each i ∈ I the set Oi ∩ (un)n∈N 6= ∅ so we can choose n(i)
such that un(i) ∈ Oi.
Note that the map I 3 i 7→ n(i) ∈ N is injective, since, if n(i) = n(j), then

un(i) = un(j) ∈ Oi ∩ Oj

so by (b) we must have i = j!
Therefore, I is countable, a contradicion!

Proof of Theorem 8.11. Let I = Rd and ωi := B1(i) (ball of radius one in
Rd centered at i ∈ Rd).
Note:

ωi4ωj = (ωi \ ωj) ∨ (ωj \ ωi) 6= 0 if i 6= j.

Let

Oi := {f ∈ L∞(Rd)| ‖f − 1lωi‖∞ <
1

2
}

and check that (Oi)i∈I obeys the assumptions of Lemma 8.12 (for this note
that ‖1lωi−1lωj‖∞ = 1 if i 6= j!) so by Lemma 8.12, L∞ is not separable!

Reflexive Separable Dual space

Lp, 1 < p <∞ YES YES Lp
′

L1 NO YES L∞

L∞ NO NO strictly bigger than L1!

9 Hilbert spaces

9.1 Some elementary properties

Definition 9.1. (a) Let H be a real vector space. A (real) scalar product
< u, v > on H is a bilinear form < ·, · >: H ×H → R that is linear in both
variables such that ∀u, v ∈ H

< u, v > =< v, u > (symmetry)

< u, u > ≥ 0 (positivity)

< u, u > = 0⇒ u = 0

(b) If H is a complex vector space, a (complex) scalar product on H is a map
< ·, · >: H ×H → C such that ∀u,w, x ∈ H,α, β ∈ C:

< x,αu+ βw > = α < x, u > +β < x,w >

< u,w > = < w, u >

< u, u > ≥ 0 and < u, u >= 0⇒ u = 0
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So < ·, · > is linear in the second argument and

< αu+ βw, x > = < x,αu+ βw >

= ᾱ< x, u >+ β̄< x,w >

= ᾱ < u, x > +β̄ < w, x >

so it is “anti”-linear in the first component.

One always has the Cauchy-Schwarz inequality

| < u, v > | ≤< u, u >
1
2< v, v >

1
2 .

Proof. W.l.o.g., u, v 6= 0.

0 ≤< tu− sv, tu− sv >= t̄ < u, tu− sv > −s̄ < v, tu− sv >
= |t|2 < u, u > −t̄s < u, v > −s̄t < v, u >︸ ︷︷ ︸

=<u,v>

+|s|2 < v, v >

= |t|2 < u, u > +|s|2 < v, v > −2Re(t̄s < u, v >)

= |t|2 < u, u > +|s|2 < v, v > −2Re(t̄seiθ| < u, v > |)

where θ is such that < u, v >= | < u, v > |eiθ.
Choose s = re−iθ, r, t > 0 to get

0 ≤ t2 < u, u > +r2 < v, v > −2Re(tr| < u, v > |)︸ ︷︷ ︸
=tr|<u,v>|

⇒ | < u, v > | ≤ 1

2

( t
r
< u, u > +

r

t
< v, v > − < tu− re−iθv, tu− re−iθv >

)
.

Now choose t, r such that λ = t
r = <v,v>

1
2

<u,u>
1
2

⇒ | < u, v > | ≤< u, u >
1
2< v, v >

1
2 −1

2
< . . . , · · · >︸ ︷︷ ︸

≥0

so we have the inequality, and if

| < u, v > | = < u, u >
1
2< v, v >

1
2

then we must have

< tu− re−iθv, tu− re−iθv >= 0

for some choice of t, r > 0. So tu − re−iθv = 0, hence u and v are linearly
dependant!

Because of the Cauchy-Schwarz,

|u| :=
√
< u, u > (the norm induced by < ·, · >)
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is a norm (we write |u| instead of ‖u‖ if the norm comes from a scalar product).
Indeed,

|u+ v|2 =< u+ v, u+ v >=< u, u > +2Re < u, v > + < v, v >

≤ |u|2 + 2| < u, v > |+ |v|2

≤ |u|2 + 2|u||v|+ |v|2

= (|u|+ |v|)2

so

|u+ v| ≤ |u|+ |v|.

Recall the parallelogram law∣∣∣a+ b

2

∣∣∣2 +
∣∣∣a− b

2

∣∣∣2 =
1

4
(< a+ b, a+ b > + < a− b, a− b >)

=
1

4
(|a|2+ < a, b > + < b, a > +|b|2

+ |a|2− < a, b > − < b, a > +|b|2)

=
1

2
(|a|2 + |b|2).

Definition 9.2. A Hilbert space is a (real or complex) vector space equipped
with a scalar product < ·, · > such that H is complete w.r.t. the norm induced
by < ·, · >.

Example. • L2(Ω) with

< u, v >:=

∫
Ω

ūvdµ

is a Hilbert space.

• l2(N) with

< x, y >:=
∑
n∈N

x̄nyn

is a Hilbert space.

Proposition 9.3. Any Hilbert space H is uniformly convex and thus reflexive.

Proof. Let ε > 0, u, v ∈ H, |u| ≤ 1, |v| ≤ 1 and |u − v| > ε. Then, by the
parallelogram law ∣∣∣u+ v

2

∣∣∣2 ≤ 1−
∣∣∣u− v

2

∣∣∣2 < 1− ε2

4

so ∣∣∣u+ v

2

∣∣∣ ≤ 1− δ

with δ = 1− (1− ε2

4 )
1
2 > 0.
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Theorem 9.4 (Projection theorem). Let H be a Hilbert space and K ⊂ H,K 6=
∅, a closed convex set. Then for every f ∈ H there exists a unique u ∈ K such
that

|f − u| = inf
v∈K
|f − v| =: dist(f,K). (1)

Moreover, u is characterized by the property

u ∈ K and Re < f − u, v − u >≤ 0 ∀v ∈ K. (2)

Notation: The above element u is called projection of f onto K and is
denoted by

u =: PKf.

Proof. Existence: 1st proof: The function

K 3 v 7→ ϕ(v) := |f − v|

is convex, continuous and

lim
v∈K,|v|→∞

ϕ(v) =∞.

So by Corollary 7.33 we know that ϕ attains its minimum on K since H is
reflexive.
2nd proof: Now a direct argument: Let (vn)n ⊂ K be a minimizing sequence
for (1), i.e., vn ∈ K and

dn := |f − vn| → d := inf
v∈K
|f − v|.

Claim 1: v := limn→∞ vn exists and v ∈ K.
Indeed, apply the parallelogram identity to a = f − vn and b = f − vm to see∣∣∣f − vn + vm

2

∣∣∣2 +
∣∣∣vn − vm

2

∣∣∣2 =
1

2
(|f − vn|2 + |f − vm|2) =

1

2
(d2
n + d2

m).

Since K is convex, vn+vm
2 ∈ K, so∣∣∣f − vn + vm

2

∣∣∣2 ≥ d2

and hence ∣∣∣vn − vm
2

∣∣∣2 ≤ 1

2
(d2
n + d2

m)− d2 → 0 as n,m→∞

so

lim
n.m→∞

|vn − vm| = 0,

and (vn)n is Cauchy! Thus v = limn→∞ vn exists and since K is closed, v ∈ K.
Equivalence of (1) and (2): Assume u ∈ K satisfies (1) and let w ∈ K. Then

v := (1− t)u+ tw ∈ K ∀t ∈ [0, 1]
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so

|f − u| ≤ |f − v| = |(f − u)− t(w − u)|

⇒ |f − u|2 ≤ |f − u|2 − 2tRe < f − u,w − u > +t2|w − u|2

so

2Re < f − u,w − u > ≤ t|w − u|2 ∀t ∈ (0, 1]

→ 0 as t→ 0

so (2) holds.
On the other hand, if (2) holds, then for v ∈ K,

|u− f |2 − |v − f |2 =< u− f, u− f > − < v − f, v − f >
= |u|2 − 2Re < f, u > +|f |2 − |v|2 + 2Re < f, v > −|f |2

= |u|2 − |v|2 + 2Re < f, v − u >
= |u|2 − |v|2 + 2Re < f − u, v − u > +2Re < u, v − u >
= −|u|2 − |v|2 + 2Re < u, v > +2Re < f − u, v − u >
= −|u− v|2 + 2Re < f − u, v − u >︸ ︷︷ ︸

≤0 by (2)

≤ 0,

so (1) holds.
Uniqueness: Assume that u1, u2 ∈ K satisfy (1). Then

Re < f − u1, v − u1 >≤ 0 ∀v ∈ K (3)

Re < f − u2, v − u2 >≤ 0 ∀v ∈ K (4)

Choose v = u2 in (3) and v = u1 in (4). Then

Re < f − u1, u2 − u1 > ≤ 0,

Re < f − u2, u2 − u1 > ≥ 0.

⇒ 0 ≥ Re < f − u1, u2 − u1 > −Re < f − u2, u2 − u1 >

= Re < −u1, u2 − u1 > +Re < u2, u2 − u1 >

= Re < u2 − u1, u2 − u1 >

= |u2 − u1|2 ≥ 0

so |u2 − u1| = 0, i.e., u2 = u1.

Remark. (1) It is not at all surprising to have a minimization problem related
to a system of inequalities. Let F : [0, 1]→ R be differentiable (with left and
right derivatives at 1 and 0, resp.) and let u ∈ [0, 1] be a point at which F
achieves its minimum. Then we have three cases:

either u ∈ (0, 1) and F ′(u) = 0

or u = 0 and F ′(0) ≥ 0

or u = 1 and F ′(1) ≤ 1
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All three cases can be summarized as

u ∈ [0, 1] and F ′(u)(v − u) ≥ 0 ∀v ∈ [0, 1].

(2) Let E be a uniformly convex Banach space, K ⊂ E,K 6= ∅, closed and
convex. Then ∀f ∈ E there exists a unique u ∈ K such that

‖f − u‖ = inf
v∈K
‖f − v‖ =: dist(f,K).

Proposition 9.5. Let K ⊂ H,K 6= ∅, closed and convex. Then PK does not
increase distance, i.e.,

|PKf1 − PKf2| ≤ |f1 − f2| ∀f1, f2 ∈ H.

Proof. Let uj := PKfj . Then as in the uniqueness proof of Theorem 9.4, we
have by (2)

Re < f1 − u1, v − u1 > ≤ 0 ∀v ∈ K,
Re < f2 − u2, v − u2 > ≤ 0 ∀v ∈ K.

Choose v = u2 in the first inequality and v = u1 in the second to see

Re < f1 − u1, u2 − u1 > ≤ 0,

Re < f2 − u2, u2 − u1 > ≥ 0.

Therefore

0 ≥ Re < f1 − u1, u2 − u1 > +Re < f2 − u2, u1 − u2 >

= Re < f1 − u1 − f2 + u2, u2 − u1 >

= Re < f1 − f2, u2 − u1 > −|u2 − u1|2.

So

|u2 − u1|2 ≤ Re < f1 − f2, u2 − u1 >

≤ | < f1 − f2, u2 − u1 > |
≤︸︷︷︸

CSI

|f1 − f2||u2 − u1|.

Thus

|u2 − u1| ≤ |f1 − f2|.

Corollary 9.6. Assume that M ⊂ H is a linear subspace. Let f ∈ H. Then
u = PMf is characterized by

u ∈M and < f − u, v >= 0 ∀v ∈M, (6)

i.e., f − u is perpendicular to all v ∈ M . Moreover, PM is a linear operator
called the orthogonal projection.
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Proof. Step 1: By (2) we have

Re < f − u, v − u >= 0 ∀v ∈M.

Since M is a subspace, tv ∈M ∀t ∈ R, v ∈M . Hence

Re < f − u, tv − u >︸ ︷︷ ︸
=tRe<f−u,v>−Re<f−u,v>

≤ 0 ∀t ∈ R

and thus for t > 0:

Re < f − u, v >≤ 1

t
Re < f − u, v >→ 0 as t→∞

so

Re < f − u, v >≤ 0

and for t < 0:

Re < f − u, v >≥ 1

t
Re < f − u, v >→ 0 as t→∞

so

Re < f − u, v >≤ 0 and Re < f − u, v >≥ 0,

i.e.,

Re < f − u, v >= 0 ∀v ∈M.

Replace v by −iv. Then

0 = Re < f − u,−iv >= Re(−i < f − u, v >) = Im < f − u, v >

so (6) holds.
Step 2:

|PMf | ≤ |f | ∀f ∈ H.

Indeed, since M is linear, 0 ∈M and PM0 = 0, so by Proposition 9.5

|PMf | = |PMf − PM0| ≤ |f − 0| = |f |.

Step 3: If u satisfies (6), then u = PMf .
Indeed, if

< f − u, v >= 0 ∀v ∈M,

then, since u ∈M , and M is linear, v − u ∈M , so

< f − u, v − u >= 0.

Hence (2) holds which characterizes u = PMf !
Step 4: PM : H →M is linear.
Indeed, if f1, f2 ∈ H,uj = PMfj , α1, α2 ∈ F, then

< f1 − u1, v >= 0 ∀v ∈M,

< f2 − u2, v >= 0 ∀v ∈M.
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Thus

0 =< α1f1 − α1u1, v > + < α2f2 − α2u2, v >

=< α1f1 + α2f2 − (α1u1 + α2u2), v >,

i.e.,

α1u1 + α2u2 = PM (α1f1 + α2f2).

9.2 The dual space of a Hilbert space

There are plenty of continuous linear functionals on a Hilbert space H. Simply
pick f ∈ H and consider

u 7→< f, u > .

The remarkable fact is that all continuous linear functionals on H are of this
form!

Theorem 9.7 (Riesz-Fréchet representation theorem). Given any ϕ ∈ H∗ there
exists a unique f = fϕ ∈ H such that

ϕ(u) =< f, u > ∀u ∈ H.

Moreover,

|f | = ‖ϕ‖H∗ .

Proof. 1st: Consider the map T : H → H∗,

Tf :=< f, · >∈ H∗,

i.e.,

Tf(u) :=< f, u > .

It is clear that ‖Tf‖H∗ = |f | (why?), so T is an isometry from H onto T (H),
i.e., T (H) is a closed subspace of H∗. Assume h ∈ (H∗)∗ which vanishes on
T (H). Since H is reflexive, h ∈ H and

Tf(h) =< f, h >= 0 ∀f ∈ H.

Take f = h. Then

|h|2 =< h, h >= 0 ⇒ h = 0,

i.e., T (H) is dense in H∗ and thus T (H) = H.
2nd: Given ϕ ∈ H∗, let

M := ϕ−1({0}) ⊂ H
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and note that M is closed since ϕ is continuous.
Assume M 6= H (otherwise ϕ ≡ 0 and we take f = 0). Pick any g0 ∈ H such
that ϕ(g0) 6= 0 and set g1 := PMg0 ∈M . Note

ϕ(g0 − g1) = ϕ(g0)− ϕ(g1)︸ ︷︷ ︸
=0

= ϕ(g0) 6= 0

so

g0 − g1 6= 0.

Put

g :=
g0 − g1

|g0 − g1|
.

Then |g| = 1,

ϕ(g) =
ϕ(g0)

|g0 − g1|
6= 0

and

< g, v >=
1

|g0 − g1|
< g0 − g1, v >=

1

|g0 − g1|
< g0 − PMg0, v >= 0

by Corollary 9.6.

Given u ∈ H let

v = u− λg

and choose λ such that v ∈M , i.e.,

λ =
ϕ(u)

ϕ(g)
.

But then

0 =< g, v >=< g, u− λg >
=< g, v > −λ< g, g >︸ ︷︷ ︸

=1

=< g, v > −ϕ(u)

ϕ(g)
.

Thus

ϕ(u) = ϕ(g) < g, u >=< ϕ(g)g, u >

so f := ϕ(g) works.
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9.3 The Theorems of Stampacchia and Lax-Milgram

In the following, let H be a real Hilbert space.

Definition. A bilinear form a : H ×H → R is said to be

(i) continuous, if there exists C > 0 such that

|a(u, v)| ≤ C|u||v| ∀u, v ∈ H;

(ii) coercive, if there exists α > 0 such that

a(v, v) ≥ α|v|2 ∀v ∈ H.

Theorem 9.8 (Stampacchia). Assume that a is a continuous coercive bilinear
form on a real Hilbert space H. Let K ⊂ H,K 6= ∅ closed and convex. Then
given ϕ ∈ H∗ there exists a unique u ∈ K such that

a(u, v − u) ≥ ϕ(v − u) ∀v ∈ K. (1)

Moreover, if a is symmetric, then u is characterized by

u ∈ K and
1

2
a(u, u)− ϕ(u) = inf

v∈K

(1

2
a(v, v)− ϕ(v)

)
. (2)

We need

Theorem 9.9 (Banach fixed point theorem). Let X 6= ∅ be a complete metric
space and S : X → X be a strict contraction, i.e.,

d(S(x1), S(x2)) ≤ kd(x1, x2) ∀x1, x2 ∈ X with k < 1.

Then S has a unique fixed point u, i.e., u = S(u).

Proof of Theorem 9.8. By Riesz representation theorem there exists f ∈ H such
that

ϕ(v) =< f, v > ∀v ∈ H.

Note that also the maps v 7→ a(u, v) ∈ H∗, so again there exists a unique
element in H, denoted by Au such that

a(u, v) =< Au, v > ∀v ∈ H.

Note: A is a linear operator from H to H and

|Au| ≤ C|u| ∀u ∈ H,
< Au, u > ≥ α|u|2 ∀u ∈ H.

So problem (1) says we should find u ∈ K such that

< Au, v − u >≥< f, v − u > ∀v ∈ K. (3)

Let ρ > 0 and note that (3) is equivalent to

< ρf − ρAu+ u− u, v − u >≤ 0 ∀v ∈ K, (4)



9. HILBERT SPACES 97

i.e.,

u = PK(ρf − ρAu+ u).

For v ∈ K set

S(v) := PK(ρf − ρAv + v).

Claim: Choosing ρ > 0 cleverly, S is a strict contraction, so it has a unique fixed
point!
Indeed,

|Sv1 − Sv2| = |PK(ρf − ρAv1 + v1)− PK(ρf − ρAv2 + v2)|
≤ |ρf − ρAv1 + v1 − ρf + ρAv2 − v2|
= |(v1 − v2) + ρ(Av1 −Av2)|

⇒ |Sv1 − Sv2|2 = |v1 − v2|2 − 2ρ< Av1 −Av2, v1 − v2 >︸ ︷︷ ︸
≥α|v1−v2|2

+ρ2|Av1 −Av2|2

≤ |v1 − v2|2(1− 2ρα+ ρ2C2).

Choose ρ so that

K2 = 1− 2ρα+ ρ2C2 < 1,

i.e., 0 < ρ < 2α
C2 . Then S has a unique fixed point.

Assume now that a is symmetric. Then a(u, v) defines a new scalar product
on H with norm

√
a(u, u) which is equivalent to the old norm |u|. Thus H is a

Hilber space for this new scalar product. By Riesz-Fréchet for a(u, v), it follows
that given ϕ ∈ H∗ there exists a unique g ∈ H such that

ϕ(u) = a(g, u) ∀u ∈ H.

Note that problem (1) amounts to finding some u ∈ K such that

a(g − u, v − u) ≤ 0 ∀v ∈ K (5)

but the solution to (5) is the projection onto K of g for the new scalar product
a! By Theorem 9.4 u ∈ K is the unique element which achieves

inf
√
a(g − v, g − v),

i.e., one minimizes on K the function

v 7→ a(g − v, g − v) = a(v, v)− 2a(g, v) + a(g, g)

= a(v, v)− 2ϕ(u) + a(g, g)

or equivalently, the function

v 7→ 1

2
a(v, v)− ϕ(u).
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Corollary 9.10 (Lax-Milgram). Assume that a(u, v) is a continuous coercive
bilinear form on H. Then given any ϕ ∈ H∗ there exists a unique u ∈ H such
that

a(u, v) = ϕ(u) ∀v ∈ H. (6)

Moreover, if a is symmetric, then u is characterized by

u ∈ H and
1

2
a(u, u)− ϕ(u) = inf

1
2v∈H

(a(v, v)− ϕ(v)). (7)

Proof. Apply Theorem 9.8 with K = H and use linearity of H as in the proof
of Corollary 9.6.


	I Normed vector spaces, Banach spaces and metric spaces
	1 Normed vector spaces and Banach spaces
	2 Basics of metric spaces
	3 Compactness in metric space
	4 The sequence spaces lp(N), 1 p 
	5 Hahn-Banach type theorems
	5.1 Some preparations
	5.2 The analytic form of Hahn-Banach: extension of linear functionals
	5.3 Geometric form of Hahn-Banach

	6 The Baire Category theorem and its applications
	6.1 The Baire Category theorem
	6.2 Application I: The set of discontinuities of a limit of continuous functions
	6.3 Application II: Continuous but nowhere differentiable functions
	6.4 Application III: The uniform boundedness principle
	6.5 Application IV: The Open Mapping and the Closed Graph theorems

	7 Weak Topologies. Reflexive Spaces. Separable Spaces. Uniform Convexity
	7.1 The coarsest topology for which a collection of maps becomes continuous
	7.2 The weakest topology (E, E)
	7.3 Weak topology and convex sets
	7.4 The weak topology (E, E)
	7.5 Reflexive spaces
	7.6 Separable spaces
	7.7 Uniformly convex spaces

	8 Lp spaces
	8.1 Some results from integration everyone must know
	8.2 Definition and some properties of Lp spaces
	8.3 Reflexivity, Separability. The Dual of Lp

	9 Hilbert spaces
	9.1 Some elementary properties
	9.2 The dual space of a Hilbert space
	9.3 The Theorems of Stampacchia and Lax-Milgram



