Harmonic Analysis for Dispersive Equations

13. Problem Sheet

Exercise 37:
Consider the linear Schrödinger equation

\[i \partial_t u = -\Delta u, \quad u(0, x) = u_0(x), \]

where \(u \) denotes a complex valued function of spacetime \(\mathbb{R}_t \times \mathbb{R}^d_x \), and we assume the initial data \(u_0 \) to be in the Schwartz class. By taking Fourier transforms, we observe that

\[\hat{u}(t, \xi) = e^{-4\pi^2 t|\xi|^2} \hat{u}_0(\xi), \]

which means that solutions with Schwartz initial data are also Schwartz for all times \(t \in \mathbb{R} \).

Denote by \(e^{it\Delta} \) the multiplier operator with symbol \(e^{-\frac{1}{4\sigma^2} + 2\pi i \sigma t} \). Prove the following:

- \(\| e^{it\Delta} u_0 \|_2 = \| u_0 \|_2 \) and \(\| \nabla e^{it\Delta} u_0 \|_2 = \| \nabla u_0 \|_2 \) for any \(u_0 \in L^2(\mathbb{R}^d) \). (Hint: Use Plancherel)

- Let \(u_0(x) = e^{-\frac{|x|^2}{4\sigma^2} + 2\pi i \sigma t} \), with \(\sigma > 0 \) and \(\xi_0 \in \mathbb{R}^d \). Show that the solution to (1) is given by the formula

\[e^{it\Delta} u_0(x) = \left(\frac{\sigma^2}{\sigma^2 + it} \right)^\frac{d}{2} e^{-4\pi^2 t|\xi_0|^2 + 2\pi i \sigma t} e^{-\frac{|x - y|^2}{4\sigma^2} - \frac{|x - \xi_0|^2}{4(\sigma^2 + it)}}. \]

(Hint: Use Fourier inversion to express the function \(e^{it\Delta} u_0(0) \) as an integral in \(\mathbb{R}^d \). After some calculations you will have to calculate an integral of the form \(\int_{\mathbb{R}} e^{-t^2} dt \), with \(\alpha, \beta \in \mathbb{C} \) and \(\text{Re}(\alpha^2) > 0 \). For this you have to use Cauchy’s integral theorem which states that if \(f \) is holomorphic in a domain \(\Omega \) then its path integral over a path \(\gamma \subset \Omega \) is 0 for every closed, piecewise continuously differentiable path \(\gamma \). This will allow you to pass to an integral of the form \(\int_{\mathbb{R}} e^{-t^2} dt \)

- Let \(u_0 \in S(\mathbb{R}^d) \). Show that the solution to (1) is given by the formula

\[e^{it\Delta} u(x) = (4\pi i t)^{-\frac{d}{2}} \int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{4it}} u_0(y) dy, \]

for \(t \neq 0 \), where the equality is meant in the \(L^2(\mathbb{R}^d) \) sense. (Hint: Start from the equality

\[e^{it\Delta} \left[(4\pi \sigma^2)^{-\frac{d}{2}} \int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{4\sigma^2}} u_0(y) dy \right] = [4\pi (\sigma^2 + it)]^{-\frac{d}{2}} \int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{4(\sigma^2 + it)}} u_0(y) dy, \]

which follows from the fact that \(e^{it\Delta} \) passes inside the integral and the use of (2) with \(\xi_0 = 0 \). Then observe that from the properties of Dirac families.

— Please turn the page! —
\[\lim_{\sigma \to 0^+} (4\pi \sigma^2)^{-\frac{d}{2}} \int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{4\sigma^2}} u_0(y) dy = u_0(x), \]

both pointwise and in the \(L^2(\mathbb{R}^d) \) sense.

- Prove the dispersive estimates

\[\|e^{it\Delta}u_0\|_p \lesssim |t|^{-\frac{d}{2}(1-\frac{2}{p})} \|u_0\|_{p'}, \]

for all \(2 \leq p \leq \infty \). (Hint: Prove it first for \(p = \infty \) using the previous question and then interpolate using that \(e^{it\Delta} \) is an isometry in \(L^2(\mathbb{R}^d) \))

Exercise 38:
Show that there is a fixed Schwartz function \(\phi \) such that if \(f \in L^1(\mathbb{R}^d) + L^2(\mathbb{R}^d) \) and \(\hat{f} \) is supported in the ball \(B(0, R) \) then

\[f = \phi^{(R^{-1})} \ast f, \]

where for a positive number \(\epsilon \) we define \(\phi^{(\epsilon)}(x) = e^{-d\phi(x/\epsilon)} \). (Hint: Take \(\phi \in S(\mathbb{R}^d) \) such that \(\hat{\phi} \) is equal to 1 on \(B(0, 1) \). Then calculate the Fourier transform of the function \(\phi^{(R^{-1})} \ast f - f \))

Exercise 39:
(Bernstein’s inequality for the ball) Suppose that \(f \in L^1(\mathbb{R}^d) + L^2(\mathbb{R}^d) \) and that \(\hat{f} \) is supported in the ball \(B(0, R) \). Then, for any \(1 \leq p \leq q \leq \infty \)

\[\|f\|_q \lesssim R^{(\frac{1}{p} - \frac{1}{q})} \|f\|_p. \]

(Hint: Consider the function \(\phi^{(R^{-1})} \) from the previous Exercise and write \(f = \phi^{(R^{-1})} \ast f \). Calculate \(\|\phi^{(R^{-1})}\|_r \) and apply Young’s inequality for convolutions for the indices \(1 + \frac{1}{q} = \frac{1}{r} + \frac{1}{p} \))

Exercise 40:
For any dimension \(d \geq 1 \) and \(N \in \mathbb{R}_+ \) show that

\[\|e^{\pm it|\nabla|}P_N f\|_{L^p_x} \lesssim (1 + N|t|)^{-\frac{d-1}{2}} N^d \|P_N f\|_{L^1_x}, \]

where \(e^{it|\nabla|} \) is the multiplier operator with symbol \(e^{2\pi it|\xi|} \), and \(P_N f \) are the Littlewood-Paley cutoff operators (denoted by \(f_j = \phi_j(D)f \) in class, \(j \in \mathbb{N} \)). Then, interpolating with the estimate \(\|e^{\pm it|\nabla|}P_N f\|_2 = \|P_N f\|_2 \), prove that for all \(2 \leq p \leq \infty \) we have the estimate

\[\|e^{\pm it|\nabla|}P_N f\|_{L^p_x} \lesssim (1 + N|t|)^{-\frac{d-1}{2}(1-\frac{2}{p})} N^d \|P_N f\|_{L^p_x}, \]

where \(p' \) is the conjugate exponent of \(p \). (Hint: For \(d = 1 \) or \(d \geq 2 \) and \(|t| \lessapprox N^{-1} \) the claim follows from Bernstein’s inequality for the ball. Therefore, it remains to deal with the case \(d \geq 2 \) and \(|t| \gg N^{-1} \). For this, consider the fattened Littlewood-Paley cutoff \(\tilde{P}_N = P_{N/2} + P_N + P_{2N} \) and write
\[e^{it|\nabla|} P_N f = e^{it|\nabla|} \tilde{P}_N (P_N f) = \left[e^{2\pi it|\xi|} \tilde{\psi} \left(\frac{\xi}{N} \right) \right] \ast P_N f, \]

where \(\tilde{\psi} \) is the Fourier multiplier associated with \(\tilde{P}_1 \). Hence, to derive the desired estimate it suffices to show

\[
\left| \int_{\mathbb{R}^d} e^{ix\xi + it|\xi|} \tilde{\psi} \left(\frac{\xi}{N} \right) d\xi \right| \lesssim N^{\frac{d+1}{2}} |t|^{-\frac{d+1}{2}}.
\]

Consider the following two cases: 1) \(|x| \ll |t| \), where the phase function has no critical points and integration by parts should be applied to estimate the oscillatory integral, and 2) \(|t| \lesssim |x| \) and the estimate \(|\tilde{\sigma}(x)| \lesssim \langle x \rangle^{-\frac{d+1}{2}} \) which was proven in class should be used in order to estimate the oscillatory integral.

http://www.math.kit.edu/iana1/lehre/harmaanadispeqn2017w/en