Harmonic Analysis for Dispersive Equations

03. Problem Sheet

Exercise 9: Suppose that \(f \) and \(\hat{f} \) are both in \(L^1(\mathbb{R}^d) \). Show that the inversion formula holds for a.e. \(x \in \mathbb{R}^d \) and that there is a continuous, bounded function \(g \in L^1(\mathbb{R}^d) \) such that \(f(x) = g(x) \) for a.e. \(x \in \mathbb{R}^d \).

Exercise 10: Show that the Fourier transform \(\mathcal{F} \) is a homeomorphism from \(S(\mathbb{R}^d) \) onto itself, that is 1-1, continuous, onto, and with a continuous inverse.

Exercise 11: For a fixed function \(g \in S(\mathbb{R}^d) \) (called the window function) the Short Time Fourier Transform (STFT) of a function \(f \) with respect to \(g \) is defined as

\[
V_g f(x, \omega) = \int_{\mathbb{R}^d} f(t) \bar{g}(t-x) e^{-2\pi i \omega \cdot t} dt,
\]

for \(x, \omega \in \mathbb{R}^d \).

- Show that if \(f \in L^2(\mathbb{R}^d) \) then \(V_g f \) is uniformly continuous on \(\mathbb{R}^{2d} \) and that the following identity holds

\[
V_g f(x, \omega) = \mathcal{F}(f \cdot T_x \bar{g})(\omega),
\]

where \(T_x \) is the translation operator \(T_x f(t) = f(t-x) \) and \(M_\omega \) the modulation operator \(M_\omega f(t) = e^{-2\pi i \omega \cdot t} f(t) \). Notice that the definition of the Short Time Fourier Transform makes sense if the window function \(g \) is in \(L^2(\mathbb{R}^d) \).

- Consider \(f_1, f_2, g_1, g_2 \in L^2(\mathbb{R}^d) \). Then \(V_{g_1} f_j \in L^2(\mathbb{R}^{2d}) \) for \(j = 1, 2 \) and

\[
\langle V_{g_1} f_1, V_{g_2} f_2 \rangle_{L^2(\mathbb{R}^{2d})} = \langle f_1, f_2 \rangle_{L^2(\mathbb{R}^d)} \overline{\langle g_1, g_2 \rangle}_{L^2(\mathbb{R}^d)}.
\]

This identity is called the orthogonality relations for STFT. Conclude that if \(f, g \in L^2(\mathbb{R}^d) \) then \(\|V_g f\|_2 = \|f\|_2 \|g\|_2 \). In particular, if \(\|g\|_2 = 1 \) then \(\|V_g f\|_2 = \|f\|_2 \). Therefore, in this case the STFT is an isometry from \(L^2(\mathbb{R}^d) \) to \(L^2(\mathbb{R}^{2d}) \).

- Fix \(g, \gamma \in L^2(\mathbb{R}^d) \) and let \(K_n \subset \mathbb{R}^{2d} \) be a nested exhausting sequence of compact sets for \(n \in \mathbb{N} \). Define \(f_n \) as

\[
f_n(t) = \frac{1}{\langle \gamma, g \rangle} \int K_n V_g f(x, \omega) M_\omega T_x \gamma(t) \, dx \, d\omega.
\]

Prove that \(\|f - f_n\|_2 \to 0 \) as \(n \to \infty \).
Exercise 12: Let \(f, g : \mathbb{R}^d \rightarrow \mathbb{C} \) be a measurable functions. The decreasing rearrangement of \(f \) is the function \(f^* : [0, \infty) \rightarrow [0, \infty] \) defined by

\[
f^*(t) = \inf\{s \in [0, \infty) : d_f(s) \leq t\},
\]

where we set \(\inf \emptyset = \infty \) and \(d_f \) is the distribution function of \(f \). Prove the following properties:

- The function \(f^* \) is decreasing, right continuous and for all \(s, t \geq 0 \)

\[f^*(t) > s \iff d_f(s) > t.\]

- If \(|f(x)| \leq |g(x)| \) for almost all \(x \), then \(f^* \leq g^* \).

- The functions \(f \) and \(f^* \) are equimeasurable, that is

\[
|\{x \in \mathbb{R}^d : |f(x)| > s\}| = |\{t \in [0, \infty) : f^*(t) > s\}|,
\]

and for all \(1 \leq p < \infty \)

\[
\|f\|_{L^p(\mathbb{R}^d)} = \|f^*\|_{L^p(0, \infty)}.
\]

For \(p = \infty \) we have \(\|f\|_{\infty} = \sup f^* = f^*(0) \).

http://www.math.kit.edu/iana1/lehre/harmaanadispeqn2017w/en