Harmonic Analysis for Dispersive Equations

07. Problem Sheet

Exercise 21:
Let \(\phi \) be an integrable function on \(\mathbb{R}^d \) and set \(\phi_\epsilon(x) = \epsilon^{-d} \phi(x/\epsilon) \). Suppose that the least decreasing radial majorant of \(\phi \) is integrable, that is let

\[
\psi(x) = \sup_{|y| \geq |x|} |\phi(y)|,
\]
and suppose that \(\int_{\mathbb{R}^d} \psi(x)dx = A < \infty \). Prove that

- For every \(f \in L^p(\mathbb{R}^d) \), \(1 \leq p \leq \infty \),

\[
\sup_{\epsilon > 0} |(f \ast \phi_\epsilon)(x)| \leq A M_f(x).
\]

- If \(\int_{\mathbb{R}^d} \phi(x)dx = 1 \) then

\[
\lim_{\epsilon \to 0} (f \ast \phi_\epsilon)(x) = f(x),
\]

for almost every \(x \in \mathbb{R}^d \).

(Hint: For the first question notice that it suffices to consider positive \(f \) and that trivially \(|f \ast \phi_\epsilon(x)| \leq f \ast \psi_\epsilon(x) \). Then observe that it suffices to consider only the case \(x = 0 \) and \(\epsilon = 1 \). Write the convolution \(f \ast \psi(0) \) using spherical coordinates and apply differentiation by parts once. For the second question follow the proof we did in class with the Lebesgue Differentiation Theorem)

Exercise 22:
Suppose \(u(x,y) \) is the Poisson integral of \(f \in L^p(\mathbb{R}^d) \), that is for \(x \in \mathbb{R}^d \) and \(y \in \mathbb{R}_+ \)

\[
u(x,y) = f \ast P_y(x),
\]

where

\[
P_y(x) = C_d \frac{y}{(|x|^2 + y^2)^\frac{d+1}{2}},
\]

and the constant is such that \(\int_{\mathbb{R}^d} P_y(x)dx = 1 \). Prove that there is a universal constant \(A > 0 \) such that

— Please turn the page! —
\[\sup_{y>0} \left| y \frac{\partial u}{\partial x_j}(x, y) \right| \leq AMf(x). \]

(Hint: Use the previous exercise for \(\phi(x) = \frac{\partial}{\partial x_j} P_1(x) \))

Exercise 23:

Show that if \(T \) is a bounded operator on \(L^2(\mathbb{R}) \) that commutes with translations and dilations and anti-commutes with the reflection \(f(x) \to \tilde{f}(x) := f(-x) \), then \(T \) is a constant multiple of the Hilbert transform \(H \). (Hint: Write \(T \) is a multiplier operator with symbol \(u(\xi) \) and show that \(u(\xi) \) is a multiple of the function \(\text{sgn}(\xi) \) which is the symbol of the Hilbert transform \(H \))