Harmonic Analysis for Dispersive Equations

07. Problem Sheet

Exercise 21:

Let ϕ be an integrable function on \mathbb{R}^d and set $\phi_{\epsilon}(x) = \epsilon^{-d}\phi(x/\epsilon)$. Suppose that the least decreasing radial majorant of ϕ is integrable, that is let

$$\psi(x) = \sup_{|y| \ge |x|} |\phi(y)|,$$

and suppose that $\int_{\mathbb{R}^d} \psi(x) dx = A < \infty$. Prove that

• For every $f \in L^p(\mathbb{R}^d)$, $1 \le p \le \infty$,

$$\sup_{\epsilon > 0} |(f * \phi_{\epsilon})(x)| \le AMf(x).$$

• If $\int_{\mathbb{R}^d} \phi(x) dx = 1$ then

$$\lim_{\epsilon \to 0} (f * \phi_{\epsilon})(x) = f(x),$$

for almost every $x \in \mathbb{R}^d$.

(Hint: For the first question notice that it suffices to consider positive f and that trivially $|f * \phi_{\epsilon}(x)| \le f * \psi_{\epsilon}(x)$. Then observe that is suffices to consider only the case x = 0 and $\epsilon = 1$. Write the convolution $f * \psi(0)$ using spherical coordinates and apply differentiation by parts once. For the second question follow the proof we did in class with the Lebesgue Differentiation Theorem)

Exercise 22:

Suppose u(x,y) is the Poisson integral of $f \in L^p(\mathbb{R}^d)$, that is for $x \in \mathbb{R}^d$ and $y \in \mathbb{R}_+$

$$u(x,y) = f * P_u(x),$$

where

$$P_y(x) = C_d \frac{y}{(|x|^2 + y^2)^{\frac{d+1}{2}}},$$

and the constant is such that $\int_{\mathbb{R}^d} P_y(x) dx = 1$. Prove that there is a universal constant A > 0 such that

— Please turn the page! —

$$\sup_{y>0} \left| y \ \frac{\partial u}{\partial x_j}(x,y) \right| \le AMf(x).$$

(Hint: Use the previous exercise for $\phi(x) = \frac{\partial}{\partial x_j} P_1(x)$)

Exercise 23:

Show that if T is a bounded operator on $L^2(\mathbb{R})$ that commutes with translations and dilations and anti-commutes with the reflection $f(x) \to \tilde{f}(x) := f(-x)$, then T is a constant multiple of the Hilbert transform H. (Hint: Write T is a multiplier operator with symbol $u(\xi)$ and show that $u(\xi)$ is a multiple of the fuction $sgn(\xi)$ which is the symbol of the Hilbert transform H)