Bemerkung zu den Grenzwertsätzen:
Die Annahme $\forall n \in \mathbb{N}$ kann mit $\forall n \geq n_0$ ersetzt werden.

Bsp: Wenn $a_n \to a$, $b_n \to a$ und $a_n \leq c_n \leq b_n$, $\forall n \geq 10,000$ dann $c_n \to a$.

Monotone Folgen

Eine reelle Folge (a_n) heißt

- **[strenge]** monoton wachsend $\Rightarrow \forall n \in \mathbb{N}$ $a_n \leq a_{n+1}$
 $[a_n < a_{n+1}]$.

- **[strenge]** monoton fallend $\Rightarrow \forall n \in \mathbb{N}$ $a_n \geq a_{n+1}$
 $[a_n > a_{n+1}]$.

Beispiel: $a_n = \frac{1}{n}$ ist streng monoton fallend, da $a_n = \frac{1}{n} > \frac{1}{n+1} = a_{n+1} \forall n \in \mathbb{N}$.

Satz: Jede konvergente Folge ist beschränkt, d.h. die Menge $\{a_n : n \in \mathbb{N}\}$ ist beschränkt.

Erklärung: Wenn $a_n \to a$ dann $\exists n_0 \in \mathbb{N}$, so dass $|a_n - a| < 1$ $\forall n \geq n_0$.
 $\Rightarrow a_n \in (a-1, a+1) \forall n \geq n_0$.

Die Folge $a_n = (-1)^n$ ist beschränkt aber nicht konvergent (sie oszilliert zwischen -1,1). Aber.

Satz: Jede beschränkte und monotone Folge ist konvergent.

Bem: Wenn a_n monoton wachsend $a_n \to \sup\{a_n : n \in \mathbb{N}\}$ Fallend, $a_n \to \inf\{a_n : n \in \mathbb{N}\}$.

Beispiel: $\frac{1}{n} \to 0 = \inf \{\frac{1}{n} : n \in \mathbb{N}\}$.

Satz: (i) $a_n \geq 0$, $\forall n \in \mathbb{N}$ und $a_n \to a \Rightarrow \sqrt[n]{a_n} \to \sqrt[a]{a}$

(ii) $\sqrt[n]{n} \to 1$ und $\sqrt[n]{c} \to 1$ $\forall c > 0$.

Beweis von (ii): Sei $a_n = \sqrt[n]{n} - 1$. Dann $a_n \geq 0$ (1) zu zeigen $a_n \to 0$

In der Tat:

(1 + $a_n)^n = (\sqrt[n]{n})^n = n$. (2)

Aber $(1 + a_n)^n = \sum_{k=0}^{n} \binom{n}{k} a_n^k 1^{n-k}$

(1)

\[(\binom{n}{2} a_n^2 = \frac{n(n-1)}{2} a_n^2. \quad (3) \]

Term $k=2$. $1 + a_n)^n \geq \frac{n(n-1)}{2} a_n^2$ (3).
Aber aus (2), (3) folgt
\[n \geq \frac{h(n-1)}{2} a_n^2 \implies a_n \leq \sqrt{\frac{2}{n-1}} \, (4) \]
\[0 \leq a_n \leq \sqrt{\frac{2}{n-1}} \implies a_n \to 0 \]
\[0 \leq a_n \leq \sqrt{\frac{2}{n-1}} \quad \forall n > 1. \]

Sei \(c > 0 \). Dann \(\exists n_0 \in \mathbb{N} \), so dass
\[\frac{1}{n_0} \ll c \ll n_0. \implies \frac{1}{n} \ll c \ll n, \forall n \geq n_0. \]
\[\implies \frac{1}{\sqrt[n]{n}} \ll \sqrt[n]{c} \ll \sqrt[n]{n} \quad \forall n \geq n_0 \]
\[1 \downarrow \]
\[\frac{1}{1} = 1 \]
\[\implies \sqrt[n]{c} \to 1, \forall c > 0. \]
Teilfolgen: Ist \((a_n)\) eine Folge und \(k: \mathbb{N} \to \mathbb{N}\), mit \(k(n) < k(n+1)\) \(\forall n \in \mathbb{N}\), dann heißt die Folge \((a_{k(n)})\) Teilfolge von \((a_n)\).

Beispiel: Sei \(a_n = (-1)^n + \frac{1}{n}\).

(i) \(k(n) = 3n\) \(\Rightarrow\) \(a_{3n} = (-1)^{3n} + \frac{1}{3n}\).

(ii) \(k(n) = 2n\) \(\Rightarrow\) \(a_{2n} = (-1)^{2n} + \frac{1}{2n} = 1 + \frac{1}{2n}\). \((5)\)

(iii) \(k(n) = 2n+1\) \(\Rightarrow\) \(a_{2n+1} = -1 + \frac{1}{2n+1}\). \((6)\)

(iv) \(k(n) = n^2 - 3n + 3\) \(\Rightarrow\) gibt keine Teilfolge, weil \(k(1) = 1 = k(2)\).

b heißt \underline{Häufungswert} von \(a_n\), wenn es eine Teilfolge gibt \((a_{k(n)})\) mit \(a_{k(n)} \to b\).

Beispiel: \(a_n = (-1)^n + \frac{1}{n}\).

\(a_{2n} = 1 + \frac{1}{2n} \to 1\). \((5)\)

\(a_{2n+1} = -1 + \frac{1}{2n+1} \to -1\). \((6)\)

Also sind \(-1, 1\) Häufungswerte von \((a_n)\).
Sei \(b \) Häufungswert von \((a_n) \) und \(a_{K(n)} \to b \). Sei \(\varepsilon > 0 \). Dann

\[
\exists \eta_0 \in \mathbb{N}, \text{ so dass } |a_{K(n)} - b| < \varepsilon, \forall n \geq \eta_0.
\]

\[
\Rightarrow a_{K(n)} \in (b - \varepsilon, b + \varepsilon), \forall n \geq \eta_0.
\]

Allgemein:

\(b \) ist Häufungswert von \((a_n) \) \(\iff \forall \varepsilon > 0 \text{ gilt } a_n \in (b - \varepsilon, b + \varepsilon) \) für unendlich viele \(n \).

Beispiel: Sei \(a_n = (-1)^n + \frac{1}{n} \) und \(b \notin \{-1, 1\} \). Dann ist \(b \) kein Häufungswert von \((a_n) \).

Beweis: Da \(b \notin \{-1, 1\} \) \(\exists \varepsilon > 0 \), so dass

\[
(6-\varepsilon, b+\varepsilon) \cap (\left((-1, -1+\varepsilon) \cup (1-\varepsilon, 1+\varepsilon)\right)) = \emptyset.
\]

Dazu \(\exists \eta_0 \in \mathbb{N}, \text{ so dass } \frac{1}{n} < \varepsilon \), \(\forall n \geq \eta_0 \).

Dann \(a_n = (-1)^n + \frac{1}{n} \notin (1-\varepsilon, -1+\varepsilon), \forall n \geq \eta_0 \).

Also \(a_n \notin (b-\varepsilon, b+\varepsilon), \forall n \geq \eta_0 \).

Also ist \(b \) kein Häufungswert.
Satz: Jede beschränkte Folge hat eine konvergente Teilfolge.

Idee des Beweises: \(a_n \) hat eine monotone Folge \(a_{k(n)} \). \(\Rightarrow \) sie ist auch beschränkt

also ist \(a_{k(n)} \) konvergent.

Rechnen mit \(\infty \): Sei \((a_n) \) eine reelle Folge.

\[
\begin{align*}
a_n \to \infty & \Rightarrow \forall k \in \mathbb{R} \\exists n_0 \in \mathbb{N}: a_n > k, \\
\alpha_n \to -\infty & \Rightarrow \forall k \in \mathbb{R} \\exists n_0 \in \mathbb{N}: a_n < k
\end{align*}
\]

Intuition: \(a_n \) wird beliebig groß, wenn \(n \) groß wird. Ähnlich

Konventionen: \(\forall a \in \mathbb{R} \) gilt \(-\infty < a < \infty\). Außerdem

\[
\begin{align*}
a + \infty &= \infty, & a - \infty &= -\infty, \\
a > 0 &= \Rightarrow a \cdot \infty = \infty, & a \cdot (-\infty) &= -\infty, \\
a < 0 &= \Rightarrow a \cdot \infty = -\infty, & a \cdot (-\infty) &= \infty
\end{align*}
\]

Bem.: \(0 \cdot \infty, \infty - \infty, 0 \cdot (-\infty) \) sind nicht definiert.

Regeln: Sind \((a_n), (b_n) \) reelle Folgen mit \(a_n \to a, b_n \to b \), wobei \(a, b \in \mathbb{R} \cup \{-\infty, \infty\} \),
dann \(a_n + b_n \to a + b \) falls \(a + b \) definit und ist \([a, b] \).
Beispiel: \[\lim \left(\sqrt{n^2+n} + n \right) \]
\[\lim \left(\sqrt{n^2+n} - n \right) \]
Da \(\sqrt{n^2+n} \to \infty \), \(n \to \infty \) bekommen wir \(\lim \left(\sqrt{n^2+n} + n \right) = \infty \).
\[\lim \left(\sqrt{n^2+n} - n \right) \]
\(\infty - \infty \) ist nicht definiert,
also die Regel kann uns nicht helfen.

Im letzten Mal haben wir gezeigt, dass \(\lim \left(\sqrt{n^2+n} - n \right) = \frac{1}{2} \), aber mit Hilfe anderer Regeln.

Ergänzung: Idee des Beweises von: \(a_n \)
beschrankt und konvergent, dann \(a_n \to a := \sup \{ a_n : n \in \mathbb{N} \} \)
\(a - \varepsilon \to \) keine obere Schranke
\[a - \varepsilon \]
\[a = \sup \{ a_n : n \in \mathbb{N} \} \]
\[\begin{align*}
\text{Da } a \text{ obere Schranke} \uparrow \\
\text{a monoton wachsend} \\
an \to a \\
a_n \geq a - \varepsilon,
\end{align*} \]
\[\forall n \geq n_0. \]
Also \(a_{n_0} > a - \varepsilon \) für ein \(n_0 \in \mathbb{N} \).
Aber \(a_n \leq a \). Also \(a - \varepsilon < a_n \leq a \), \(\forall n \geq n_0 \Rightarrow |a_n - a| < \varepsilon \), \(\forall n \geq n_0 \).
Jede monotone wachsende Folge ist konvergent.

Das Auto daff sich nur nach rechts bewegen.

An Ort des vorderen Teils des Autos in Sekunden nach dem Anfang.

Analogen von konvergent?

Das Auto muss irgendwo aufhören sich zu bewegen.

\(a \rightarrow \) Stelle des vorderen Teils wenn das Auto aufhört sich zu bewegen.

Das ist keine mathematische Erklärung sondern ein Versuch die Intuition des Theorems zu erklären.