Modulprüfung / Bachelor
Höhere Mathematik I für die Fachrichtung
Elektrotechnik und Informationstechnik

Aufgabe 1 (6 + 6 + 8 Punkte)

a) Berechnen Sie alle \(z \in \mathbb{C} \), die der Gleichung
\[
z^4 + i = 0
\]
genügen.

b) Beweisen Sie mittels vollständiger Induktion, dass für alle \(n \geq 1 \) gilt:
\[
\sum_{k=1}^{n} k(2k + 1) = \frac{n(n + 1)(4n + 5)}{6}
\]

c) Bestimmen Sie die Grenzwerte:

(i) \(\lim_{n \to \infty} \left(\sqrt[n]{n^4 + n^3 \cos n} - n^2 \right) \)

(ii) \(\lim_{x \to 0} \frac{x - \tan x}{e^{x^2} - e^{-x^2}} \)

Aufgabe 2 (12+8 Punkte)

a) Die Funktion \(f : \mathbb{R} \to \mathbb{R} \) ist gegeben durch \(f(x) := e^{2x} - \arctan(x) + x \).

i) Zeigen Sie, dass \(f \) eine Umkehrfunktion \(f^{-1} : \mathbb{R} \to \mathbb{R} \) besitzt, indem Sie begründen, dass \(f \) injektiv ist, und das Bild \(f(\mathbb{R}) \) von \(f \) angeben.

ii) Bestimmen Sie \(f^{-1}(1) \) und berechnen Sie \((f^{-1})'(1) \).

b) Zeigen Sie mit Hilfe des Mittelwertsatzes, dass für alle \(x, y \in [0, \pi/2] \) gilt
\[
|\ln(1 + \sin x) - \ln(1 + \sin y)| \leq |x - y|.
\]

Aufgabe 3 (8+6+6 Punkte)

a) Berechnen Sie die folgenden Integrale.

i) \(\int_{0}^{\sqrt{2}} x \sin(x^2) \, dx \)

ii) \(\int_{0}^{\pi} e^x \sin^2(x) \, dx \)

— bitte wenden —
b) Berechnen Sie Minimum und Maximum der Funktion
\[f : \begin{cases} [1, 4] & \rightarrow \mathbb{R}, \\ x & \mapsto |2x - \frac{1}{x}|. \end{cases} \]

c) Zeigen Sie, dass das uneigentliche Integral
\[\int_0^\infty \frac{\sin^2 \left(\frac{\pi}{2} x \right)}{x^2 + 1} \, dx \]
konvergent ist und dass sein Wert in \([0, \frac{1}{2} + \frac{\pi}{4}]\) liegt.

Aufgabe 4 (14 + 6 Punkte)

a) Betrachten Sie die Matrix \(A \in \mathbb{R}^{3 \times 5} \) mit \(A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 0 & -1 \\ 7 & 6 & 5 & 4 & 3 \end{pmatrix} \).

Bestimmen Sie \(\ker(A) \), \(\text{Bild}(A) \), \(\dim \text{Bild}(A) \) und alle Lösungen des Systems \(A \overrightarrow{x} = \overrightarrow{b} \) für \(\overrightarrow{b} = (8, -6, -4)^T \).

b) Für jedes \(n \in \mathbb{N} \) sei
\[b_n := \left(\sum_{k=0}^{\infty} \frac{3^k}{k!} \right)^{(-1)^{n+2n}} \]

Berechnen Sie den Konvergenzradius der Potenzreihe
\[\sum_{n=1}^{\infty} (-1)^n \frac{b_n}{n} (x - 1)^n. \]

Viel Erfolg!

Nach der Klausur:

Die Ergebnisse der Modulprüfung werden am Montag, den 23.03.2020, neben dem Zimmer 2.027 (Geb. 20.30) veröffentlicht.

Die Einsichtnahme in die korrigierten Modulprüfungen findet am Dienstag, den 24.03.2020, von 17 bis 18 Uhr im Fritz-Haller Hrsaal (Geb. 20.40) statt.
Lösung

Aufgabe 1 a) \(z^4 = -i \iff z^4 = e^{i \frac{3}{8} \pi} \iff z = e^{i \left(\frac{3}{8} \pi + \frac{2k \pi}{4} \right)} \)

\(z_1 = e^{i \left(\frac{3}{8} \pi + 2 \pi n \right)} \), \(z_2 = e^{i \left(\frac{7}{8} \pi + 2 \pi n \right)} \), \(z_3 = e^{i \left(\frac{11}{8} \pi + 2 \pi n \right)} \),

\(z_4 = e^{i \left(\frac{15}{8} \pi + 2 \pi n \right)} \)

b) IA. \(n = 1 \quad 1 \cdot 3 = \frac{1 \cdot 2 \cdot 9}{6} \quad \checkmark \)

IS. Annahme: für \(n \) gilt

\[\sum_{k=1}^{n} k(2k+1) = \frac{n(n+1)(4n+5)}{6} \]

Wir werden beweisen, dass

\[\sum_{k=1}^{n+1} k(2k+1) = \frac{(n+1)(n+2)(4n+9)}{6} \quad \text{vgl.} \]

Es gilt

\[\sum_{k=1}^{n+1} k(2k+1) = \sum_{k=1}^{n} k(2k+1) + (n+1)(2n+3) = \]

\[= \frac{n(n+1)(4n+5)}{6} + (n+1)(2n+3) = \]

\[= \frac{(n+1) \left[n(4n+5) + 6(2n+3) \right]}{6} = \frac{n+1}{6} \cdot [4n^2 + \]

\[+ 5n + 12n + 18] = \frac{(n+1)}{6} \left[(n+2)(4n+9) \right] = \]

\[= \frac{(n+1)(n+2)(4(n+1) + 5)}{6} \quad \checkmark \]
c) i) \[\lim_{n \to \infty} \left(\sqrt[n^4+n^{3\frac{1}{2}}\cos n} - n^2 \right) = \]

\[= \lim_{n \to \infty} \frac{n^4+n^{3\frac{1}{2}}\cos n - n^4}{\sqrt[n^4+n^{3\frac{1}{2}}\cos n} + n^2} = \]

\[= \lim_{n \to \infty} \frac{n^{\frac{3}{2}}}{n^2 \cos n} = 0 \]

ii) \[\lim_{x \to 0} \frac{x - \tan x}{e^{x^2} - e^{-x^2}} = \lim_{x \to 0} \frac{e^{x^2} - e^{-x^2}}{x - \tan x} = \text{Hospital} \]

\[= \lim_{x \to 0} \frac{1 - \frac{1}{\cos^2 x}}{2x \left[e^{x^2} + e^{-x^2} \right]} = \lim_{x \to 0} \frac{-\sin x}{\cos^2 x \cdot 4x} = \]

\[= \lim_{x \to 0} \frac{-1}{4} \sin x = 0 \]

Aufgabe 2 a) i) \[f'(x) = 2e^{2x} - \frac{1}{1+x^2} \]

\[> 2e^{2x} > 0, \text{ Die Funktion ist monotone streng} \]

\[\Rightarrow \text{injektiv}. \]

\[f(-\infty) = -\infty, \quad f(+\infty) = +\infty \Rightarrow \]

\[f(\mathbb{R}) = (-\infty, +\infty). \]

ii) \[f^{-1}(1) = 0, \text{ weil } f(0) = e^{20} = \text{arctang}(0) + 0 = 1 - 0 + 0 = 1. \]
\[(f^{-1})'(a) = \frac{1}{f'(0)} = \frac{1}{2 \cdot e^{-\frac{1}{1+0}} + 1} = \frac{1}{2} \]

b) Es gilt
\[|\ln(1+\sin x) - \ln(1+\sin y)| = \left| \ln(1+\sin t) \right| \cdot |x-y|, \text{ wobei } t \in [0, \frac{\pi}{2}] \]
\[\left| \ln(1+\sin t) \right| = \left| \frac{1}{1+\sin t} \cdot \cos t \right| \leq 1 \]
\[\text{für } t \in [0, \frac{\pi}{2}] \]

Aufgabe 3

a) i) \[\int_0^{\frac{\pi}{2}} x \sin(x^2) \, dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin u \, du = \]
\[= -\frac{1}{2} \cos u \bigg|_0^{\frac{\pi}{2}} = \frac{1}{2} \]

ii) \[\int_0^{\frac{\pi}{2}} e^x \sin^2 \sqrt{x} \, dx = e^x \sin x \bigg|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} 2 e^x \sin x \, dx \]
\[\cdot \cos x \, dx = 0 - \int_0^{\frac{\pi}{2}} \sin 2x \cdot e^x \, dx = \]
\[= -\int_0^{\frac{\pi}{2}} e^x \sin 2x \, dx \]

Wir rechnen nun
\[\int_0^{\pi} e^x \sin 2x \, dx = e^x \sin 2x \bigg|_0^\pi - \int_0^{\pi} e^x \cdot 2 \cos 2x \, dx = \]
\[= -2e^x \cos 2x \bigg|_0^\pi + 4 \int_0^{\pi} e^x (-\sin 2x) \, dx \]
\[\Rightarrow 5 \int_0^{\pi} e^x \sin 2x \, dx = -2 \left[e^\pi \cdot 1 - e^0 \cdot 1 \right] = \]
\[= 2 \left[1 - e^\pi \right] \Rightarrow \]
\[\Rightarrow \int_0^{\pi} e^x \sin x \, dx = \frac{2}{5} \left[e^\pi - 1 \right]. \]

b) Auf dem Interval \([1, 4]\) gilt
\[|2x - \frac{1}{x}| = 2x - \frac{1}{x}. \]
\[f'(x) = 2 + \frac{1}{x^2} > 0 \Rightarrow f_{\text{min}} = f(1) = 1, \]
\[f_{\text{max}} = f(4) = 4 \cdot 2 - \frac{1}{4} = 7 \frac{3}{4}. \]

c) Es gilt \(|\sin \left(\frac{\pi}{2} x \right) | \leq 1.\]
\[\int_0^\infty \frac{1}{x^2 + 1} \, dx = \arctan x \bigg|_0^\infty = \frac{\pi}{2} - 0 = \frac{\pi}{2}. \]
Nach Majoranten Kriterium ist das Integral \(\int_0^\infty \frac{\sin^2 \left(\frac{\pi}{2} x \right)}{1 + x^2} \, dx \) konvergent.
Außerdem gilt es
\[\int_0^\infty \frac{\sin \left(\frac{\pi}{2} x \right)}{1 + x^2} \, dx = \int_0^1 \frac{\sin \left(\frac{\pi}{2} x \right)}{1 + x^2} \, dx + \int_1^\infty \frac{\sin \left(\frac{\pi}{2} x \right)}{1 + x^2} \, dx \leq \]
\[\int_0^1 \frac{1}{2} \left(1 - \cos \pi x \right) \, dx + \arctan x \bigg|_1^\infty = \]
\[= \frac{1}{2} - \frac{1}{2} \int_0^1 \cos \pi x \, dx + \frac{\pi}{4} = \frac{1}{2} - \frac{1}{2\pi} \sin \pi x \bigg|_0^\infty + \frac{\pi}{4} = \]
\[= \frac{1}{2} + \frac{\pi}{4}. \]

\[\text{Aufgabe 4} \]

a) \[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 0 & -1 \\
7 & 6 & 5 & 4 & 3 \\
\end{pmatrix}
\begin{pmatrix}
8 \\
-6 \\
-4 \\
\end{pmatrix}
\]
\[
\begin{pmatrix}
Z_2 \rightarrow Z_2 - 3Z_1 \\
Z_3 \rightarrow Z_3 - 2Z_1 \\
Z_5 \rightarrow -\frac{1}{4} Z_2 \\
\end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
0 & -4 & -8 & -12 & -16 \\
0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
8 \\
-30 \\
0 \\
\end{pmatrix}
\]

\[
\Rightarrow \text{Kern} \,(A) = \text{lin} \left\{ \begin{pmatrix}
-1 \\
2 \\
-1 \\
\end{pmatrix}, \begin{pmatrix}
-2 \\
-1 \\
3 \\
\end{pmatrix}, \begin{pmatrix}
-3 \\
-4 \\
0 \\
\end{pmatrix} \right\}
\]

Lösung:
\[
\begin{pmatrix}
1 \\
-1 \\
0 \\
\end{pmatrix} \Rightarrow \lambda \begin{pmatrix}
-1 \\
1 \\
0 \\
\end{pmatrix} + \mu \begin{pmatrix}
-2 \\
0 \\
1 \\
\end{pmatrix} + \nu \begin{pmatrix}
-3 \\
4 \\
0 \\
\end{pmatrix}
\]
\[\dim \text{Bild}(A) = 5 - \dim \text{Kern}(A) = 2. \]

Die Vektoren \(\begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix} \) und \(\begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} \) sind linear unabhängig. Bild \(A \) = \(\text{lin} \left\{ \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} \right\} \).

6) \(\left(\sum_{k=0}^{n} \frac{3^k}{k!} \right) \xrightarrow{n \to \infty} e^3 \)

\[n = 2p + 1 \quad b_n \xrightarrow{n \to \infty} e^{-3 \cdot 2n} \]

\[n = 2p \quad b_n \xrightarrow{n \to \infty} e^{3 \cdot 2n} \]

\[R = \frac{1}{\limsup_n \sqrt[n]{b_n}} = \frac{1}{\limsup_n \sqrt[n]{b_n}} = \]

\[= \frac{1}{\lim_n \sqrt[n]{e^{6n}}} = e^{-6} \]