Zu den Aufgaben aus 3. Übblattes

(Beschreibungen wie im 4. Kapitel.
A1 (a, b), A2 (a, b) Sätze 1, 2
A3 Satz 3.)

A1 41
\[x = \frac{1}{2} t^2 - 1, y = \frac{1}{4} t^2 \] warten ans

(41) \[\dot{x} = \frac{t^2}{2} \sin t \]
(42) \[\dot{y} = \frac{1}{4} t \]
\[\text{und } \int_{t_0}^{t_1} \frac{1}{2} \left(\frac{\pi}{6} \right)^2 \cdot t \cdot t_0 = 0 \] bestimmt.

(44) \[t_0 = \frac{\pi}{6} \]
(45) \[x(t) = \int_{t_0}^{t_1} \frac{t}{6} \frac{t}{2} dt = \cos t + \tan t + \frac{1}{2} \left(3 - \frac{\pi}{12} \right) \]

A1 61
Die Gleichungen für \(x = 4 + t, y = t^2 + l \) lauten hier:

\(t_0 = \frac{\pi}{6} \]

(46) \[t_0 = \frac{\pi}{6} \]
(47) \[\dot{x} = \frac{1}{4} t + 1, \dot{y} = 3 t^3 + 1 \]

(48) \[y_{t_0} = 2, \quad y_{t_1} = \frac{9}{4} \]
(49) \[t_0 = 1 \Rightarrow \dot{y}_{\frac{9}{4}} \]

(50) \[\sqrt{t} = \frac{3}{7} t^4 + \frac{9}{2} t^2 + 1 \]

A2 14
\[y_{t_1} = ax + \sqrt{4 + a^2}, \quad \text{akut, und Ziehungsgrade} \]

(51) \[\text{wie in A1 (a, b)} \]

Die Gleichungen für \(x = 4 + t, y = \sqrt{t} \):

\(\frac{3}{2} \dot{x} = \dot{y}, \dot{y} = \sqrt{4 + t^2} \]
(52) \[\ddot{x} = \frac{t}{4} \]
(53) \[\ddot{y} = \frac{t}{4} \]

\[\frac{14}{1,21} \Rightarrow x = 4 \pm 1 = \frac{t}{\sqrt{4 + t^2}} \]

Dies und \(y \) ergibt \(y = \frac{4}{\sqrt{4 + t^2}} \)

Hier kann man \(t \) eliminieren: Man erhält

\[x^2 + \frac{y^2}{4} = 1, \quad y > 0 \]

A261 Setze \(y'' = u \). Die DGl wird zu

\[(u')^2 + xu'' - u = 0 \]

Die Lösungspfade sind \(ax^2 + ax + b \) (\(a, b \) konst)

\[y = \frac{1}{2} ax^2 + ax + b \] (\(a, b \) konst)

2) \(x = \pm \sqrt{t}, \quad u = \frac{t}{t+1} \) werden aus den Gleichungen

\(x + 1 = t' + t + t^2 \)

und \(x' = t' + t \)

berechnet.

\[\Rightarrow \begin{align*}
 x &= \pm \sqrt{t} \\
 u &= \sqrt{t} + t
\end{align*} \]

oder \(u = -\frac{x^2}{4} \Rightarrow y(x) \)

\[= \frac{3}{12} + c, \quad c \text{ konst} \]

43 (Abschnitt 4.2 / Satz 3)

Vorgehen: 1. Schritt: \(p = \frac{4}{3} \) aus \(tp' - 2p^2 + 2p = 0 \) berechnen.

2. Schritt: \(y \) aus \(y' = p y' \) berechnen.
1. Schritt: \(y_{1t}(x) = 0 \Rightarrow y_{1t} = \text{const} \) ist Lösung.

2) \(y_{1t} + 0 \): \(t y_{1t} - 2 y_{1t} + 2 = 0 \) (lineare inhomogene 2. Ordnung)

\[
\Rightarrow y_{1t} = 1 + c \cdot t^2
\]

2. Schritt: \(y'(y_{1t}) = 1 + c \cdot y_{1t}^2 \)

\[
\Rightarrow x + c_1 = \begin{cases}
\frac{\pi}{\sqrt{c}} \cdot \arctan \left(\frac{c_{1/2}}{\sqrt{c}} \right), & c > 0 \\
0, & c = 0 \\
\frac{\pi}{2 \sqrt{|c|}} \cdot \ln \left| \frac{c_{1/2}}{\sqrt{|c|}} \right|, & c < 0
\end{cases}
\]

\(c_1, c \) konst.

Aufgaben

\((x_0, y_{10}) \) beliebiges Punkt auf der gesuchten Kurve.

Man findet \(x_s = x_0 - \frac{f(x_0)}{f'(x_0)} \)

\(y_s = -f'(x_0) \cdot x_s \)

Die Bedingung des Aufgaben gibt:

\[
2c^2 = \frac{1}{2} |x_1 y_s| \quad \Rightarrow \quad x_0 \int_{x_1}^{x_0} f' + f c_{10} = \pm 2c \int_{x_1}^{x_0} f'
\]

\(x + x_1 \rightarrow x, \quad y = f_{x_1} \) ergibt man: \(y = x y' \pm 2c \cdot 1/y' \)