Mathematical Methods of Quantum Mechanics
1st Exercise Sheet

1. Let \(H \) be a Hilbert space. Prove the following statements:
 (i) A sequence \((u_n)\) in \(H \) converges to \(u \in H \) if and only if
 \[
 \lim_{n \to \infty} \langle u_n, \phi \rangle = \langle u, \phi \rangle \quad (\phi \in H)
 \]
 and \(\lim_{n \to \infty} \|u_n\| = \|u\| \). Give an example to show that the condition (*) alone does not imply convergence of \((u_n)\) in \(H \).
 (ii) If \(M \) is a subspace of \(H \), then \((M^\perp)^\perp = M \).

2. Let \(A, B \) be bounded operators on the Hilbert space \(H \). Show that
 (i) \((A + B)^* = A^* + B^*\), \((\lambda A)^* = \overline{\lambda} A^*\) for \(\lambda \in \mathbb{C} \).
 (ii) \((AB)^* = B^* A^*\)
 (iii) \(\|A\| = \|A^*\|\)
 (iv) \(A^{**} = A\)
 (v) \(\|AA^*\| = \|A^*A\| = \|A\|^2\)
 (vi) \(\ker A = (\ran A^*)^\perp, \ker A^* = (\ran A)^\perp\).

3. Let
 \[
 D := \text{linear hull of } \{e^{-|x|^2/2}x_1^{k_1}x_2^{k_2}x_3^{k_3} : k_1 \in \mathbb{N}_0\} \subset L^2(\mathbb{R}^3).
 \]
 (i) Show that \(x \mapsto \phi(x)e^{-|x|^2/2} \in L^1(\mathbb{R}^3) \) for any \(\phi \in L^2(\mathbb{R}^3) \).
 (ii) Let \(\phi \in L^2(\mathbb{R}^3) \) be such that \(\int_{\mathbb{R}^3} \phi(x)e^{-|x|^2/2}x_1^{k_1}x_2^{k_2}x_3^{k_3}dx = 0 \) for all \((k_1, k_2, k_3) \in \mathbb{N}_0^3\). Prove that
 \[
 \int_{\mathbb{R}^3} \phi(x)e^{-|x|^2/2}e^{i\xi \cdot x}dx = 0 \quad (\xi \in \mathbb{R}^3)
 \]
 holds.
 Hint: use the usual series \(e^z = \sum_{n=0}^{\infty} \frac{1}{n!}z^n \) for the exponential function.
 (iii) Show that \(D \) is dense in \(L^2(\mathbb{R}^3) \).
 Hint: Fourier transform.