Problems

1. Prove the following statement: Let H be a self-adjoint operator on $L^2(\mathbb{R}^n)$ and let function $f \in L^\infty(\mathbb{R}^n)$ satisfy $\lim_{|x| \to \infty} f(x) = 0$. Then the following are equivalent:
 (a) $\exists z_0 \in \rho(H): F(H - z_0)^{-1}$ is compact,
 (b) $\forall z \in \rho(H): F(H - z)^{-1}$ is compact
where F is multiplication operator by a function $f(x)$.

2. Let $g \in C_0^\infty(\mathbb{R}^n)$ and $f(x) = g(x)|x|^{-\alpha} = \frac{g(x)}{(\epsilon + |x|^2)^{\alpha/2}}$ with $d \geq 3$. Then the following holds
 (a) $\int_{\mathbb{R}^n} |\nabla f|^2 dx = \int_{\mathbb{R}^n} |\nabla g|^2 |x|^{-2} dx + \int_{\mathbb{R}^n} |f|^2 |x|^{-2} [\alpha n - (\alpha^2 + 2\alpha)|x|^{-2} x^2] dx$,
 (b) $\int_{\mathbb{R}^n} |\nabla f|^2 dx \geq (-\alpha^2 + (d - 2)\alpha) \int_{\mathbb{R}^n} |f|^2 |x|^{-2} dx$.
Furthermore find an optimal value of α.

3. Hardy’s inequality for 1DShow that for every function $\psi \in H_0^1(\mathbb{R}^+)$ the following holds
 $\int_{\mathbb{R}^+} |\psi'|^2 dx \geq \frac{1}{4} \int_{\mathbb{R}^+} \frac{|\psi(x)|^2}{x^2} dx$. (1)

4. Show that the inequality (1) is non-attainable and optimal, i.e.
 (a) non-attainability There is no non-trivial function such that, the equality holds in (1),
 (b) optimality We can not make the constant 1/4 on the right hand side bigger.