

Mathematical Methods in Quantum Mechanics II

1st Exercise Sheet

Exercise 1:

Consider the Hamiltonian operator

$$H_{N,Z} = \sum_{i=1}^{N} \left(-\frac{1}{2} \Delta_{x_i} - \frac{Z}{|x_i|} \right) + \sum_{1 \le i \le j \le N} \frac{1}{|x_i - x_j|},$$

where $x_1, \ldots, x_N \in \mathbb{R}^3$, and the space

$$L_a^2(\mathbb{R}^{3N}) = \Big\{ \psi \in L^2(\mathbb{R}^{3N}) : \psi(x_1, \dots, x_N) = (-1)^{\sigma} \psi(x_{\sigma(1)}, \dots, x_{\sigma(N)}), \text{ for all } \sigma \in S_N \Big\}.$$

Show the following:

- 1. $(L_a^2(\mathbb{R}^{3N}), \|\cdot\|_2)$ is a Hilbert space. (Hint: For a given $\sigma \in S_N$ define the operator $T_\sigma: L^2(\mathbb{R}^{3N}) \to L^2(\mathbb{R}^{3N})$ by the formula $T_\sigma \psi(x_1, \ldots, x_N) = \psi(x_{\sigma(1)}, \ldots, x_{\sigma(N)})$ and observe that it is a unitary operator on $L^2(\mathbb{R}^{3N})$. Then show that the set $L^2_a(\mathbb{R}^{3N})$ is closed in $L^2(\mathbb{R}^{3N})$.)

- 2. The operator $P_{a,N}\psi = \frac{1}{N!} \sum_{\sigma \in S_N} (-1)^{\sigma} T_{\sigma} \psi$ is the orthogonal projection onto $L_a^2(\mathbb{R}^{3N})$. 3. $H_{N,Z}(L_a^2(\mathbb{R}^{3N}) \cap H^2(\mathbb{R}^{3N})) \subset L_a^2(\mathbb{R}^{3N})$. 4. The operator $H_{N,Z}: L_a^2(\mathbb{R}^{3N}) \cap H^2(\mathbb{R}^{3N}) \to L_a^2(\mathbb{R}^{3N})$ is self-adjoint. (Hint: Either rework the proof of Exercise 13 of last semester or use that $H_{N,Z}: H^2(\mathbb{R}^{3N}) \to L^2(\mathbb{R}^{3N})$ is selfadjoint, shown in last semester, together with the basic criterion of self-adjointness.)
- 5. $\sigma_{ess}(H_{N,Z}|_{L^2_a}) = [\inf \sigma(H_{N-1,Z}|_{L^2_a}), \infty)$. (Hint: With the help of the projection operator $P_{a,N}$ rework the proof of the HVZ theorem, i.e. Theorem 8.6 of last semester which can be found here.)