Classical Methods for Partial Differential Equations

8. Exercise Sheet

Exercise 1
Let \(\Omega \) be the open square \(\{ x \in \mathbb{R}^2 \mid |x_1| < 1, |x_2| < 1 \} \). Define the function
\[
u(x) = \begin{cases}
1 - x_1 & \text{if } x_1 > 0, |x_2| < x_1; \\
1 + x_1 & \text{if } x_1 < 0, |x_2| < -x_1; \\
1 - x_2 & \text{if } x_2 > 0, |x_1| < x_2; \\
1 + x_2 & \text{if } x_2 < 0, |x_1| < -x_2.
\end{cases}
\]
(1)

For which exponents \(p \in [1, \infty) \) does \(u \) belong to \(W^{1,p}(\Omega) \)?

Exercise 2
Let \(B := B_{1/2}(0) \subset \mathbb{R}^2 \) and \(u : B \to \mathbb{R} \) defined as \(u(x) = \log(\log(1/|x|)) \). Show that \(u \) lies in \(W^{1,2}(B) \), but not in \(L^\infty(B) \).

Exercise 3
Let \(\Omega \subset \mathbb{R}^n \) be an open domain, and let \(u \in W^{1,1}_{loc}(\Omega) \). Show that also the functions \(u^+ := \max\{u, 0\} \), \(u^- := -\min\{u, 0\} \) and \(|u| \) lie in \(W^{1,1}_{loc}(\Omega) \), and determine their weak derivatives.

Exercise 4
Let \(\Omega \) be an open domain in \(\mathbb{R}^n \), and let \(u \in W^{1,1}_{loc}(\Omega) \). Show that for \(c \in \mathbb{R} \) the following holds:
\[
Du(x) = 0 \quad \text{for almost all } x \in N_c := \{ x \in \Omega : u(x) = c \}.
\]
(2)