Die Menge sei

Wir beweisen die Aussage durch vollständige Induktion:

Aufgabe 1

a) i) Die Menge K besteht aus allen Punkten, die zum Punkt i den Abstand 5 haben; K ist also ein Kreis mit Radius 5 um i.

Außerdem gilt

$$H = \{ z \in \mathbb{C}\setminus\{0\} : \arg(z) = \frac{3}{4}\pi \} = \{ z \in \mathbb{C} : z = re^{\frac{3}{4}\pi i}, r > 0 \} =$$

$$\{ z \in \mathbb{C} : z = r\left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right), r > 0 \} = \{ z \in \mathbb{C} : z = r(-1 + i), r > 0 \}.$$

H ist also die Halbgerade durch 0 und $-1 + i$ (ohne den Punkt 0).

Die gegebenen Mengen lassen sich damit wie folgt skizzieren.

ii) Sei $z \in K \cap H$. Wir setzen $x := \text{Re} \ z$ und $y := \text{Im} \ z$.

Wegen $z \in K$ gilt $25 = |z - i|^2 = |x + i(y - 1)|^2 = x^2 + (y - 1)^2 = x^2 + y^2 - 2y + 1$.

Wegen $z \in H$ folgt wie in i) außerdem $x = -y$.

Aus beidem zusammen folgt $24 = x^2 + x^2 + 2x = 2(x^2 + x)$. Das ist gleichbedeutend mit $x = 3$ oder $x = -4$. Damit folgt $z = 3 - 3i$ oder $z = -4 + 4i$. Offenbar ist $3 - 3i \notin K \cap H$ und $-4 + 4i \in K \cap H$.

$K \cap H$ besteht also aus genau einem Punkt, nämlich $z = -4 + 4i$, und für dieses z gilt $\text{Re} \ z = -4$ und $\text{Im} \ z = 4$.

b) Wir beweisen die Aussage durch vollständige Induktion:

I.A. ($n = 1$): Es gilt $\sum_{k=1}^{1} k! = 1 \leq 1! \cdot 2$.

I.S.: Für ein festes $n \in \mathbb{N}$ gelte $\sum_{k=1}^{n} k! \leq n! \cdot 2$ (I.V.). Dann folgt

$$\sum_{k=1}^{n+1} k! = \sum_{k=1}^{n} k! + (n + 1)! \stackrel{\text{I.V.}}{\leq} 2n! + (n + 1)! \leq$$

$$(n + 1)n! + (n + 1)! = 2(n + 1)!,$$

die Induktionsbehauptung trifft dann also auch für $n + 1$ zu.

Damit ist $\sum_{k=1}^{n} k! \leq n! \cdot 2$ für alle $n \in \mathbb{N}$ bewiesen.
Aufgabe 2

a) Die Reihe \(\sum_{k=1}^{\infty} k z^k \) hat den Konvergenzradius:
\[
R = \lim_{k \to \infty} \frac{k}{k+1} = 1.
\]
Für kein \(z \) mit \(|z| = 1 \) gilt \(k z^k \to 0 \) (\(k \to \infty \) gilt), konvergiert \(\sum k z^k \) für alle \(z \in \mathbb{C} \) mit \(|z| < 1 \) und für keine andere \(z \).

b) Nach a) ist \(f(x) = \sum_{k=1}^{\infty} k x^k \) genau für \(x \) mit \(|x| < 1 \) definiert. Beachtet man \(\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \) für \(|x| < 1 \) und
\[
\left(\sum_{k=0}^{\infty} x^k \right)' = \frac{1}{(1-x)^2}, \quad |x| < 1,
\]
folgt: \(f(x) = x \left(\sum_{k=0}^{\infty} x^k \right)' = \frac{x}{(1-x)^2} \) für \(|x| < 1 \).

c) \(\left(\sum_{k=1}^{\infty} \frac{k}{2^k} \right)^3 = \left(\sum_{k=1}^{\infty} \frac{k}{2^k} \right)^3 = \left(\sum_{k=1}^{3} \frac{\frac{1}{2}}{2^k} \right)^3 = \frac{1}{8} \).
Aufgabe 3

a) Auf $\mathbb{R} \setminus \{0\}$ ist f als Komposition differenzierbarer Funktionen differenzierbar und für alle $x \in \mathbb{R} \setminus \{0\}$ gilt nach der Quotientenregel

$$f'(x) = \frac{(1 - \cos x)x^2 - 2x(x - \sin x)}{x^4} = \frac{-x - x \cos x + 2 \sin x}{x^3}.$$

Außerdem gilt

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x - \sin(x)}{x^3} = \lim_{x \to 0} \frac{x - \left(x - \frac{1}{3} x^3 + \frac{1}{3} x^5 - \frac{1}{5} x^7 + \ldots \right)}{x^3} = \lim_{x \to 0} \frac{1}{3!}x - \frac{1}{5!}x^2 + \frac{1}{7!}x^4 - \ldots = \frac{1}{3!} = \frac{1}{6}.$$

Damit ist f in 0 differenzierbar und es gilt $f'(0) = \frac{1}{6}$.

Fazit: f ist auf \mathbb{R} differenzierbar und es gilt für alle $x \in \mathbb{R}$

$$f'(x) = \begin{cases}
\frac{-x - x \cos x + 2 \sin x}{x^3} & \text{falls } x \neq 0, \\
\frac{1}{6} & \text{falls } x = 0.
\end{cases}$$

b) i) f ist als Komposition differenzierbarer Funktionen differenzierbar und es gilt $f'(x) = 3 + 2 \sin(x) \cos(x)$.

Weiter gilt $f'(x) = 3 + 2 \sin(x) \cos(x) \geq 3 - 2 = 1 > 0$.

Daraus folgt, daß f auf $[-\pi, \pi]$ streng monoton wachsend ist.

ii) Aus i) folgt, daß f injektiv ist.

Wegen $f(-\pi) = -3\pi$ und $f(\pi) = 3\pi$ folgt aus dem Zwischenwertsatz für die stetige Funktion f, daß jedes $y \in [-3\pi, 3\pi]$ als Funktionswert angenommen wird. Also ist f surjektiv.

Insgesamt folgt, daß f bijektiv ist.

iii) Gemäß i) gilt $f'(\frac{\pi}{2}) = 3 + 2 \cdot 1 \cdot 0 = 3 \neq 0$.

Damit folgt aus dem Satz über die Ableitung der Umkehrfunktion, daß f^{-1} in $f(\frac{\pi}{2}) = \frac{3}{2}\pi + 1$ differenzierbar ist und es gilt

$$(f^{-1})'(\frac{3}{2}\pi + 1) = \frac{1}{f'(f^{-1}(\frac{3}{2}\pi + 1))} = \frac{1}{f'(\frac{\pi}{2})} = \frac{1}{3}.$$
Aufgabe 4

a) i) Es gilt
\[
\int_{-1}^{\pi} \left| \cos \left(\frac{x+|x|}{2}\right) \right| \, dx = \int_{-1}^{0} \left| \cos \left(\frac{x+(-x)}{2}\right) \right| \, dx + \int_{0}^{\pi} \left| \cos \left(\frac{x+x}{2}\right) \right| \, dx =
\int_{-1}^{0} \, dx + \int_{0}^{\pi} \cos x \, dx = 1 + \int_{0}^{\pi/2} \cos x \, dx + \int_{\pi/2}^{\pi} -\cos x \, dx =
1 + [\sin x]_{x=0}^{x=\pi/2} + [-\sin x]_{x=\pi/2}^{x=\pi} = 1 + 1 - 0 + (-0) - (-1) = 3.
\]

ii) Mit partieller Integration folgt
\[
\int_{0}^{1} \frac{2x}{(x^2+1)^2} \cdot \left(\frac{1}{3} x^3 + x\right) \, dx =
\left[-\frac{1}{(x^2+1)} \cdot \left(\frac{1}{3} x^3 + x\right) \right]_{x=0}^{x=1} - \int_{0}^{1} \frac{1}{(x^2+1)} \cdot (x^2 + 1) \, dx =
-\frac{1}{2} \cdot \frac{4}{3} - (-1) \cdot 0 + \int_{0}^{1} 1 \, dx = \frac{-2}{3} + 1 = \frac{1}{3}.
\]

b) Wir substituieren \(t = \sqrt{x} \left(\frac{dt}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2t}, 2t \, dt = dx \right) \).
\[
\frac{1}{2} \int_{1}^{4} f'(\sqrt{x}) + \frac{f(\sqrt{x})}{\sqrt{x}} \, dx = \frac{1}{2} \int_{1}^{2} \left(f'(t) + \frac{f(t)}{t} \right) \cdot 2t \, dt = \int_{1}^{2} tf'(t) + f(t) \, dt =
\int_{1}^{2} tf'(t) \, dt + \int_{1}^{2} f(t) \, dt.
\]
Mit partieller Integration folgt
\[
\int_{1}^{2} tf'(t) \, dt = \left[tf(t) \right]_{t=1}^{t=2} - \int_{1}^{2} t \cdot f(t) \, dt = 2f(2) - f(1) - \int_{1}^{2} t \cdot f(t) \, dt = 3 - \int_{1}^{2} t \cdot f(t) \, dt.
\]
Also gilt
\[
\frac{1}{2} \int_{1}^{4} f'(\sqrt{x}) + \frac{f(\sqrt{x})}{\sqrt{x}} \, dx = 3 - \int_{1}^{2} t \cdot f(t) \, dt + \int_{1}^{2} f(t) \, dt = 3.
\]

Bemerkung:
Die Berechnung läßt sich auch „durch scharfes Hinsehen“ wie folgt abkürzen: Es gilt
\[
t f'(t) + f(t) = (tf(t))'.
\]
Damit erhält man auch ohne partielle Integration
\[
\int_{1}^{2} tf'(t) + f(t) \, dt = \left[tf(t) \right]_{t=1}^{t=2} = 2f(2) - f(1) = 3.
\]