A1

a) \(f(z) = \frac{5z^2 + 2i}{z(z^2 + 1)} = \frac{2}{z} + \frac{3}{z^2 + 1} \) (P8 21)

1) gemäß Reihen um \(z_0 = i \), die in \(\frac{i}{2} \) konvergiert:

\[f(z) = \frac{2}{i+2-i} + \frac{3}{2-i+2i} = \frac{2}{i} \left(\frac{1}{1-i} \right) + \frac{3}{2i} \left(\frac{1}{1-\frac{i}{2}} \right) \]

von links:

\[2^{\left(\frac{i}{2} \right)} \sum_{k=0}^{\infty} \frac{3}{2^{k+1}} \left(\frac{1}{1-i} \right)^k \]

\[\text{für } |z-i|<1 \]

insgesamt:

\[\sum_{k=0}^{\infty} \left(2 + \frac{3}{2^{k+1}} \right) i^k (2-i)^k \]

2) gemäß Reihen um \(z_0 = -\frac{i}{2} \), die in \(\frac{3}{2} \) konvergiert:

\[f(z) = \frac{2}{i+2-i} + \frac{3}{2-i+2i} \]

\[= \frac{2}{(z-i)} \frac{1}{1+\frac{i}{z-i}} + \frac{3}{2i} \sum_{k=0}^{\infty} \frac{1}{2^k} i^k (2-i)^k \]

\[= 2 \sum_{k=0}^{\infty} (-2)^k \frac{1}{(z-i)^{k+1}} + \frac{3}{2i} \sum_{k=0}^{\infty} \frac{1}{2^k} i^k (2-i)^k \]

\[\text{für } |z-i|<1 \]

\[|z-i|<2 \]

\[\text{für } |z-i|<1 \]

\[|z-i|<2 \]
A1 b/ \([0,1+i]\) bezeichne die Strecke von 0 nach 1+i.

Nach dem Cauchy-Integralsatz gilt, \(2e^{\frac{z^2}{2}}\) für \(z \in \Omega\) holomorph ist:

\[
\int_{0}^{1+i} 2e^{\frac{z^2}{2}} \, dz = \int_{0}^{1+i} 2e^{\frac{z^2}{2}} \, dz
\]

Durch \(2t+i = t(1+i), 0 \leq t \leq 1\), wird \([0,1+i]\) parametrisiert:

\[
\int_{0}^{1+i} 2e^{\frac{z^2}{2}} \, dz = (1+i)^2 \int_{0}^{1} te^{\frac{2i}{t}} \, dt = i \int_{0}^{1} e^{\frac{2i}{t}} \, dt = \frac{1}{2} \left(e^{2i} - 1 \right)
\]

Substitution \(t \rightarrow t = e^{-t}\)
EA

Es ist \(\dot{y}(t) = 3 \dot{y}(t - 6) - 3 \ddot{y}(t - 6) \quad (t > 0) \)

Man nutzt mit der Differentiationseigenschaft und
\(y(0) = 0 \), \(y'(10) = 2 \):

\[
y_{u1} + 5 \dot{y}_{u1} + 6 y_{u1} = 3 \ddot{y}(t - 6) - 3 \dot{y}(t - 6)
\]

Transformation des Problems

\[
2 y_{s1} - 2 + 5 s y_{s1} + 6 y_{s1} = \frac{3}{s} - \frac{3}{s} e^{-6s}
\]

\[\Rightarrow (s^2 + 5s + 6)y_{s1} = 2 + \frac{3}{s} - \frac{3}{s} e^{-6s}
\]

\[(s + 3)(s + 2)y_{s1} = 2 + \frac{3}{s} - \frac{3}{s} e^{-6s}
\]

\[
y_{s1} = \frac{2}{(s + 3)(s + 2)} + \frac{3}{s(s + 3)(s + 2)} \left(1 - e^{-6s}\right)
\]

Das ist die Laplace-Transformation der gesuchten Lösung.

Reihentransformation: (P82)

\[
\begin{align*}
\frac{2}{(s + 3)(s + 2)} &= \frac{-2}{s + 3} + \frac{2}{s + 2} \\
\frac{3}{s(s + 3)(s + 2)} &= \frac{3}{s} + \frac{1}{s + 3} - \frac{3}{s + 2}
\end{align*}
\]

\[\Rightarrow y(s) \cdot e^{-6s} = \left(\frac{1}{2} - e^{-6s} + \frac{1}{2} e^{-3s}\right) y_{u1}\]

\[-(\frac{1}{2} + e^{-3(t-6)} - \frac{3}{2} e^{-3(t-6)}) y_{u1}\]

\[(t > 0) \quad \begin{cases}
\left(\frac{1}{2} + \frac{1}{2} e^{-2t} - \frac{1}{2} e^{-3t}\right), & 0 \leq t < 6 \\
\left(\frac{3}{2} e^{-2t} - 3t - 3(t-6)
ight), & t > 6
\end{cases}
\]