Home | english  |  Impressum  |  Datenschutz  |  Sitemap  |  Intranet  |  KIT
Arbeitsgruppe Angewandte Analysis

Kollegiengebäude Mathematik (20.30)
Zimmer 2.029

Englerstraße 2
76131 Karlsruhe

Dr. Kaori Nagato-Plum

HM I, II, III: für Studierende der Physik, Elektrotechnik
Übungsscheine für HM: für die Studierende der Physik
Numerische Methoden (ETIT)
zusätzlich: studienbegleitende Klausuren zu den Vorlesungen der Dozenten der Arbeitsgruppe.

Nach Vereinbarung (Kontakt per E-Mail.)

Tel.: 0721 608-42056

Fax.: 0721 608-46214



Publications in refereed Journals

33) A. Deruelle and T. Lamm. Existence of expanders of the harmonic map flow, to. appear in Ann. Sci. Ec. Norm. Sup. (4)

32) E. Kuwert and T. Lamm. Reflection of Willmore surfaces with free boundaries, to appear in Canad. J. Math.

31) T. Lamm, A. Malchiodi and M. Micallef. A gap theorem for alpha-harmonic maps between two-spheres, to appear in Anal. PDE.

30) T. Lamm, J. Metzger and F. Schulze. Local foliation of manifolds by surfaces of Willmore type, to appear in Ann. Inst. Fourier (Grenoble).

29) T. Lamm, A. Malchiodi and M. Micallef. Limits of alpha-harmonic maps, to appear in J. Differential Geom.

28) S. Herr, T. Lamm, T. Schmid and R. Schnaubelt. Biharmonic wave maps: Local wellposedness in high regularity, Nonlinearity 33 (2020), 2270-2305.

27) S. Herr, T. Lamm and R. Schnaubelt. Biharmonic wave maps into spheres, Proc. Amer. Math. Soc. 148 (2020), 787-796.

26) T. Lamm and R.M. Schätzle. Conformal Willmore Tori in R^4, J. Reine Angew. Math. 742 (2018), 281-301.

25) A. Deruelle and T. Lamm. Weak stability of Ricci expanders with positive curvature operator, Math. Z. 286 (2017), 951-985.

24) T. Lamm and B. Sharp. Global estimates and energy identities for elliptic systems with antisymmetric potentials, Comm. PDE 41 (2016), 579-608.

23) H. Koch and T. Lamm. Parabolic equations with rough data, Math. Bohem. 140 (2015), 457-477.

22) E. Kuwert, T. Lamm and Y. Li. Two-dimensional curvature functionals with superquadratic growth, J. Eur. Math. Soc. (JEMS). 17 (2015), 3081-3111.

21) C. Breiner and T. Lamm. Quantitative stratification and higher regularity for biharmonic maps, Manuscripta Math. 148 (2015), 379-398.

20) C. Breiner and T. Lamm. Compactness results for sequences of approximate biharmonic maps, Pacific J. Math. 276 (2015), 59-92.

19) T. Lamm and R.M. Schätzle. Rigidity and non-rigidity results for conformal immersions, Adv. Math. 281 (2015), 1178-1201.

18) T. Lamm and H.T. Nguyen. Branched Willmore Spheres, J. Reine Angew. Math. 701 (2015), 169-194.

17) T. Lamm and R.M. Schätzle. Optimal rigidity estimates for nearly umbilical surfaces in arbitrary codimension. Geom. Funct. Anal. 24 (2014), 2029-2062.

16) T. Lamm and H.T. Nguyen. Quantitative rigidity results for conformal immersions. Amer. J. Math. 136 (2014), 1409-1440.

15) T. Lamm and J. Metzger. Minimizers of the Willmore functional with a small area constraint. Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), 497-518.

14) T. Lamm and L. Lin. Estimates for the energy density of critical points of a class of conformally invariant variational problems. Adv. Calc. Var. 6 (2013), 391-413.

13) J. Chen and T. Lamm. A Bernstein type theorem for entire Willmore graphs. J. Geom. Anal. 23 (2013), 456-469.

12) H. Gong, T. Lamm and C. Wang. Boundary partial regularity for a class of biharmonic maps. Calc. Var. 45 (2012), 165-191.

12) H. Koch and T. Lamm. Geometric flows with rough initial data. Asian J. Math. 16 (2012), 209-236.

10) T. Lamm, J. Metzger and F. Schulze. Foliations of asymptotically flat manifolds by surfaces of Willmore type. Math. Ann. 350 (2011), 1-78.

9) T. Lamm and J. Metzger. Small surfaces of Willmore type in Riemannian manifolds. Int. Math. Res. Not. IMRN. 19 (2010), 3786-3813.

8) C. Kenig, T. Lamm, D. Pollack, G. Staffilani and T. Toro. The Cauchy problem for Schrödinger flows into Kähler manifolds. Discrete Contin. Dyn. Syst. 27 (2010), 389-439.

7) T. Lamm. Energy identity for approximations of harmonic maps from surfaces. Trans. Amer. Math. Soc. 362 (2010), 4077-4097.

6) T. Lamm, F. Robert and M. Struwe. The heat flow with a critical exponential nonlinearity. J. Funct. Anal. 257 (2009), 2951-2998.

5) T. Lamm and C. Wang. Boundary regularity for polyharmonic maps in the critical dimension. Adv. Calc. Var. 2 (2009), 1-16.

4) T. Lamm and T. Rivière. Conservation laws for fourth order systems in four dimensions. Comm. PDE 33 (2008), 245-262.

3) T. Lamm. Fourth order approximation of harmonic maps from surfaces. Calc. Var. 27 (2006), 125-157.

2) T. Lamm. Biharmonic map heat flow into manifolds of nonpositive curvature. Calc. Var. 22 (2005), 421-445.

1) T. Lamm. Heat flow for extrinsic biharmonic maps with small initial energy. Ann. Global Anal. Geom. 26 (2004), 369-384.

PhD and Diploma Thesis

1) T. Lamm. Biharmonic maps, PhD thesis, University of Freiburg, 2005 (pdf-Datei).

2) T. Lamm. Biharmonischer Wärmefluss, Diploma thesis, University of Freiburg, 2002 (pdf-Datei).