
M.Sc. Marvin Raimund Schulz
-
Nach Vereinbarung
-
Kollegiengebäude Mathematik (20.30)
2.026
+49 (0)721 608 46525
-
marvin.schulz@kit.edu
This semester I am TA (Teaching Assistant) for the class HM II (Physics).
Please see our Ilias-Class: https://ilias.studium.kit.edu/ilias.php?baseClass=ilrepositorygui&ref_id=2648094
My research is centered on the mathematical analysis of many-body systems in quantum mechanics. The nature of the models I study naturally leads to intersections with various disciplines in mathematics and physics, including functional analysis, spectral theory, the calculus of variations, partial differential equations, and many-body quantum mechanics.
My Ph.D. thesis, titled Analytic Studies of Atomic Structures and the Efimov Effect
was handed in. The defense will be held on April 29.
During my doctoral studies, I worked on the Ionization Conjecture for atomic systems, deriving new bounds on the maximal excess charge .
In parallel, I studied the existence and absence of the Efimov effect in different configurations of constrained quantum particles (see for example )
For more detailed information please see my more detailed Research Statement and my CV.
Manuscripts
These preprints will be available on arXiv soon. Stay tuned for updates!
On the Excess Charge Problem of Atoms
Why a System of Three Bosons on Separate Lines Can Not Exhibit the Confinement Induced Efimov Effect (arXiv)
Preprint: CRC 1173 Preprint
Absence of the Efimov effect for a system of confined particles (Compared to
we cover the case of particles with equal masses only, but for a larger class of potentials)
Manuscripts in writing:
Conspiracy of Potential Wells and Absence of Efimov Effect in Dimension Four.
Existence of the Confined Efimov Effect for Systems of Two Two-Dimensional Particles Interacting with a Third (un)-Confined Particle.
Publications: Written and Co-Authored as a Student (Physics)
Analytical Solution of a Gas Release Problem considering Permeation with Time-Dependent Boundary Conditions
Numerical Analysis of an Isovolumetric Thermal Desorption Experiment
Master & Bachelor Thesis:
The Bogolubov-de Gennes Equations in Generalized Hartree-Fock Theory
Numerische Berechnung von stationären Zuständen der Bloch-Redfield Mastergleichung
Teaching Evaluation:
Analysis III, Winter 19/20
Advanced Mathematics, Winter 20/21
Advanced Mathematics, Summer 23
Aktuelles Lehrangebot
Semester | Titel | Typ |
---|---|---|
Wintersemester 2024/25 | Höhere Mathematik I für die Fachrichtung Physik | Vorlesung |
Sommersemester 2024 | Analysis für das Lehramt | Vorlesung |
Wintersemester 2023/24 | Analysis I | Vorlesung |
Sommersemester 2023 | Höhere Mathematik II für die Fachrichtung Physik | Vorlesung |
Wintersemester 2022/23 | Höhere Mathematik I für die Fachrichtung Physik | Vorlesung |
Sommersemester 2022 | Evolutionsgleichungen | Vorlesung |
Wintersemester 2021/22 | Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik | Vorlesung |
Sommersemester 2021 | Höhere Mathematik II für die Fachrichtung Physik | Vorlesung |
Wintersemester 2020/21 | Höhere Mathematik I für die Fachrichtung Physik | Vorlesung |
AG Mathematische Physik | Seminar | |
Sommersemester 2020 | Analysis 4 | Vorlesung |
Wintersemester 2019/20 | Analysis III | Vorlesung |