L^p-extrapolation of non-local operators
Patrick Tolksdorf
Johannes Gutenberg-Universität Mainz
Institut für Mathematik
Staudingerweg 9
55128 Mainz
Germany
tolksdorf@uni-mainz.de

In this talk, we discuss non-local operators like elliptic integrodifferential operators of fractional type
\[Au := \text{p.v.} \int_{\mathbb{R}^d} \frac{u(x) - u(y)}{|x-y|^{d+2\alpha}} \, dy \]
(1)
or the Stokes operator with bounded measurable coefficients \(\mu \), formally given by
\[Au := -\text{div}(\mu \nabla u) + \nabla \phi, \quad \text{div}(u) = 0 \text{ in } \mathbb{R}^d. \]
(2)

These operators satisfy L^2-resolvent estimates of the form
\[\|\lambda(\lambda + A)^{-1}f\|_{L^2} \leq C\|f\|_{L^2} \quad (f \in L^2(\mathbb{R}^d)) \]
for \(\lambda \) in some complex sector \(\{ z \in \mathbb{C} \setminus \{0\} : |\text{arg}(z)| < \theta \} \). We describe how analogues of such a resolvent estimate can be established in L^p by virtue of certain non-local Caccioppoli inequalities. Such estimates build the foundation for many important functional analytic properties of these operators like maximal L^q-regularity.

More precisely, we establish resolvent estimates in L^p for \(p \) satisfying
\[\left| \frac{1}{p} - \frac{1}{2} \right| < \frac{\alpha}{d} \]
in the case (1) and
\[\left| \frac{1}{p} - \frac{1}{2} \right| < \frac{1}{d} \]
(3)
in the case (2). This resembles a well-known situation for elliptic systems in divergence form with L^\infty-coefficients. Here, important estimates like Gaussian upper bounds for the semigroup cease to exist and the L^p-extrapolation has been concluded by other means. In particular, for elliptic systems one can establish resolvent bounds for numbers \(p \) that satisfy (3) and if \(d \geq 3 \). Davies constructed examples which show that corresponding resolvent bounds do not hold for numbers \(1 < p < \infty \) that satisfy
\[\left| \frac{1}{p} - \frac{1}{2} \right| > \frac{1}{d}. \]

These elliptic results give an indication that the result for the Stokes operator with L^\infty-coefficients is optimal as well.