Non-selfadjoint Spectral Problems Related to Self-similar Blowup in Nonlinear Wave Equations

Kaori Nagatou, KIT

Abstract

We consider the wave equation with a power nonlinearity
\[u_{tt} - \Delta u = u^p \]
with initial profiles \(u(x, 0) \) and \(u_t(x, 0) \), \(x \in \mathbb{R}^3 \), \(t \geq 0 \), and \(p > 1 \) an odd integer. In order to investigate the blowup dynamics we look for radial self-similar blowup solutions of the form
\[u(x, t) = (T - t)^{-\frac{2}{p-1}} U \left(\frac{|x|}{T-t} \right), \quad T > 0, \]
with a smooth, radial profile \(U \). In particular, we are interested in stability properties of such solutions. This gives rise to analyzing the spectrum of the linearized operator, i.e. to the eigenvalue problem:
\[\mathcal{L}u = \lambda u, \]
where \(D(\mathcal{L}) \subset H^2_{\text{rad}}(B^3) \times H^1_{\text{rad}}(B^3), H^k_{\text{rad}}(B^3) := \{ u \in H^k(B^3) : u \text{ is radial} \} \),
\[\mathcal{L} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} := \begin{pmatrix} -\rho u_1' + \alpha u_2 + u_2 \\ u_1' + \frac{2}{\rho} u_2 - (\alpha + 1) u_2 + V(\rho) u_1 \end{pmatrix}, \]
\[\rho = \frac{|x|}{T-1}, \quad V(\rho) = pU(\rho)^{p-1} \quad \text{and} \quad \alpha = \frac{2}{p-1}. \]
We are interested in excluding eigenvalues of \(\mathcal{L} \) in parts of the right complex half plane, which is ongoing work together with B. Schöckhuber, Y. Watanabe, M. Plum and M.T. Nakao. In this talk, we will show (as a partial result) that all eigenvalues \(\lambda \) in the half-plane \(\{ \text{Re}(z) > 1 - \alpha \} \) are real, which constitutes a substantial advantage for the computation of the desired eigenvalue exclusions. We also provide a global existence region for the complex eigenvalues and upper bounds for the real eigenvalues and show the principle, how we can exclude eigenvalues in such a region.