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We consider the problem {
u′′(t) + g(u(t), λ) = 0 for t ∈ (0, T ),
u(0) = u(T ) = 0.

(1)

where
(A) α0 ∈ (0, ∞] and g ∈ C1((−α0, α0) × R,R) with g(z, λ) = −g(−z, λ) > 0 for 0 < z < α0, λ ∈ R.

Recall the necessary and sufficient conditions appearing in Corollary 2.5 from the lecture:
(N) gz(0, λ⋆) = π2(j+1)2

T 2 .

(S) gz(0, · ) is strictly monotone near λ⋆.
Problem 4:
Assume (A), (N) and the following stronger assumption, replacing (S):
(S’) g ∈ C2((−α0, α0) × R,R) and gzλ(0, λ⋆) ̸= 0.

By Corollary 2.5, for α > 0 sufficiently small there exist j-nodal solutions (±uα, λα) of (1) with ∥u∥∞ = α
that bifurcate from (0, λ⋆) w.r.t. ∥ · ∥∞.

(a) Prove that if (S’) holds, then for α sufficiently small these solutions are uniquely determined by α.

(b) Prove that if (S’) holds and gzz(0, λ) ̸= 0, then for α sufficiently smallthe bifurcation curve has the
following “direction”:

• λα is decreasing in α if gzz(0, λ⋆)gzλ(0, λ⋆) > 0,
• λα is increasing in α if gzz(0, λ⋆)gzλ(0, λ⋆) < 0.

Solution to problem 4:
We revisit the proof of Corollary 2.5, and consider

T√
2(j + 1)

=
∫ α

0

1√
G(α, λ) − G(z, λ)

dz =
∫ 1

0

(
G(α, λ) − G(sα, λ)

α2

)−1/2

ds =: f(α, λ)(2.5)

where G(z, λ) =
∫ z

0 g(s, λ) ds and we may write

G(α, λ) − G(αs, λ)
α2 =

∫ 1

s

∫ τ

0
gz(µα, λ) dµ dτ(2)

=
∫ 1

s

∫ τ

0
gz(0, λ0) + o(1) dµ dτ = [gz(0, λ0) + o(1)]1 − s2

2

as (α, λ) → (0, λ0). Using dominated convergence, it follows that

f(α, λ) =
∫ 1

0

(
G(α, λ) − G(sα, λ)

α2

)−1/2

ds →
∫ 1

0

(
gz(0, λ0)1 − s2

2

)−1/2

ds = 1√
gz(0, λ0)

π√
2

.

as (α, λ) → (0, λ0). Recall Theorem 2.3:

There exists a j-nodal solution (u, λ) of (1) with ∥u∥∞ = α if and only if f(α, λ) = T√
2(j+1) .
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(a) We choose ε, δ > 0 such that gzλ ̸= 0 on (−δ, δ) × (λ⋆ − ε, λ⋆ + ε). W.l.o.g. let gzλ > 0 (otherwise
replace λ by −λ).
As gz is strictly increasing in λ, using (4) and the definition of f , we see that f is strictly decreasing
in λ. Since in addition

f(0+, λ⋆ − ε) = 1√
gz(0, λ⋆ − ε)

π√
2

>
1√

gz(0, λ⋆)
π√
2

= T√
2(j + 1)

>
1√

gz(0, λ⋆ + ε)
π√
2

= f(0+, λ⋆ − ε),

for α > 0 sufficiently small there exists a unique solution λ ∈ (λ⋆ − ε, λ⋆ + ε) of f(α, λ) = T√
2(j+1) .

By Theorem 2.3 this completes the proof.

(b) Again choose ε, δ > 0 such that gzλ, gzz ̸= 0 on (−δ, δ) × (λ⋆ − ε, λ⋆ + ε). W.l.o.g. let gzλ > 0. Also
we only consider the case gzz > 0, as gzz < 0 can be treated similarly.

Problem 5:
Assume that (A) and (N) hold, but (S) does not. Prove the following:

(a) Multiple bifurcation curves can exist at (0, λ⋆), i.e. there exist j-nodal solutions (uα, µα), (vα, να)
that bifurcate from (0, λ⋆) such that ∥uα∥∞ = α = ∥vα∥∞ and µα ̸= να for all α.
Remark: This does not show that the solutions (uα, µα), (vα, να) describe curves (i.e. that the maps
α 7→ (uα, µα), α 7→ (vα, να) are continuous). You need not show continuity.

(b) Bifurcation need not occur at (0, λ⋆).
Hint: Consider g(x, λ) = f(λ) sin(x) for suitable f .

Solution to problem 5:
(a) Consider, as a slight modification of the pendulum equation discussed in the lecture, g(z, µ) =

(λj + (µ − λj)2) sin(z) where λj = ((j + 1)π)2 for some j ∈ N0, and consider µ⋆ := λj .
We know from the lecture that, for −u′′ = λ sin(u), u(0) = u(1) = 0, j-nodal solutions bifurcate at
the point (0, λj), parametrized as (uα,j , λα,j)0<α<π with λj(α) ↘ λj as α ↘ 0. With g chosen as
above, we find two parameters µ corresponding to each value of α via

λα,j = λj + (µ − λj)2 ⇐⇒ µ = λj ±
√

λα,j − λj ,

which yields two distinct families of bifurcating j-nodal solutions of (1) parametrized as(
uα,j , λj +

√
λj(α) − λj

)
0<α<π

,

(
uα,j , λj −

√
λj(α) − λj

)
0<α<π

.

(b) Again, we modify the pendulum equation. We introduce g(z, µ) = (λj − (µ − λj)2) sin(z) where
λj = ((j + 1)π)2 for some j ∈ N0, and consider µ⋆ := λj .
However, using the notation from part (a), the equation

λα,j = λj − (µ − λj)2

does not have solutions, and the bifurcation diagram for −u′′ = λ sin(u), u(0) = u(1) = 0 from the
lecture reveals that there is no bifurcation of (1) at (0, λj).

Problem 6:
Let g ∈ C(R×R,R) with g(0, λ) = 0 (λ ∈ R) and b ∈ C(R×R,R) with b(x, λ) ̸= 0 for all x, λ ∈ R. Show
that

u′′ + b(x, λ)u′ + g(u, λ) = 0(3)

does not admit nonconstant periodic solutions.

Solution to problem 6:
First, we note that by assumption, b is continuous and does not have any zero, so b is either negative or
positive on all of R × R.
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We assume that u ∈ C2(R) is a periodic solution of (3). We introduce

E : R → R, E(t) := 1
2 [u′(t)]2 + G(u(t), λ)

where G(z, λ) :=
∫ z

0 g(s, λ) ds for λ, z ∈ R. Then, E ∈ C1(R), and for t ∈ R

E′(t) = u′(t) · (u′′(t) + g(u(t), λ)) = −b(t, λ)[u′(t)]2(4)

where we have inserted the differential equation in the last step. Since b does not change sign, this implies
that E is a monotone function. As u is periodic, so is E, and we conclude that E is constant.

Hence, E′ ≡ 0, and by (4), u′ ≡ 0. So u is constant, and the assertion is proved.
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