

Solution to Problem Sheet 5

Bifurcation Theory

Winter Semester 2022/23

5.12.2022

Problem 13:

Let $n \in \mathbb{N}$. Consider a smooth bounded domain $\Omega \subseteq \mathbb{R}^n$ and, for $\varepsilon \in \mathbb{R}$, the boundary value problem

(1)
$$_{\varepsilon}$$

$$\begin{cases}
-\Delta u = u^{3} & \text{in } \Omega, \\
u \equiv \varepsilon & \text{on } \partial\Omega.
\end{cases}$$

Prove that for $\alpha \in (0,1)$ there exists $\varepsilon_0 > 0$ with the property that problem $(1)_{\varepsilon}$ admits a classical solution $u_{\varepsilon} \in C^{2,\alpha}(\overline{\Omega})$ for $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$.

Hint: Use the auxiliary result below Problem 12.

Solution to problem 13:

We intend to apply the Implicit Function Theorem. To do this, define the function $F: X \times Y \to Z$ with $X = \mathbb{R}, Y = C^{2,\alpha}(\overline{\Omega}), Z = C^{\alpha}(\overline{\Omega}) \times C^{\alpha}(\partial\Omega)$ given by

$$F(\varepsilon, u) = (\Delta u + u^3, u|_{\partial\Omega} - \varepsilon)$$

Then (ε, u) solve $(1)_{\varepsilon}$ if and only if $F(\varepsilon, u) = (0, 0)$. Further, we have F(0, 0) = (0, 0).

For the estimates proving continuous differentiability, we need an algebraic property of the Hölder norms.

Lemma. For $a, b \in C^{0,\alpha}(\overline{\Omega})$, we have that $ab \in C^{0,\alpha}(\overline{\Omega})$ with

$$\|ab\|_{C^{0,\alpha}(\overline{\Omega})} \le 3\|a\|_{C^{0,\alpha}(\overline{\Omega})}\|b\|_{C^{0,\alpha}(\overline{\Omega})}.$$
 (\diamondsuit)

<u>Proof of Lemma</u>: Let $a, b \in C^{0,\alpha}(\overline{\Omega})$. First, we note that ab is a continuous function. We now estimate the norms, recalling that

$$\|a\|_{C^{0,\alpha}(\overline{\Omega})} = \|a\|_{\infty} + [a]_{0,\alpha} = \sup_{x\in\overline{\Omega}} |a(x)| + \sup_{x\neq y\in\overline{\Omega}} \frac{|a(x) - a(y)|}{|x-y|^{\alpha}}.$$

We have $\|ab\|_{\infty} \leq \|a\|_{\infty} \|b\|_{\infty} \leq \|a\|_{C^{0,\alpha}(\overline{\Omega})} \|b\|_{C^{0,\alpha}(\overline{\Omega})}$ and

$$\begin{split} [ab]_{0,\alpha} &= \sup_{x \neq y \in \overline{\Omega}} \frac{|a(x)b(x) - a(y)b(y)|}{|x - y|^{\alpha}} \leq \sup_{x \neq y \in \overline{\Omega}} \frac{|a(x)||b(x) - b(y)| + |a(x) - a(y)||b(y)|}{|x - y|^{\alpha}} \\ &\leq \|a\|_{\infty} \sup_{x \neq y \in \overline{\Omega}} \frac{|b(x) - b(y)|}{|x - y|^{\alpha}} + \|b\|_{\infty} \sup_{x \neq y \in \overline{\Omega}} \frac{|a(x) - a(y)|}{|x - y|^{\alpha}} \\ &= \|a\|_{\infty} [b]_{0,\alpha} + \|b\|_{\infty} [a]_{0,\alpha} \leq 2\|a\|_{C^{0,\alpha}(\overline{\Omega})} \|b\|_{C^{0,\alpha}(\overline{\Omega})}, \end{split}$$

and summing up both estimates, the lemma is proved.

Step 1: Fréchet differentiability of F. We claim that F is continuously Fréchet differentiable with

(1)
$$F'(\varepsilon, u)[(\delta, h)] = (\Delta h + 3u^2 h, h|_{\partial\Omega} - \delta)$$

To show this, we estimate

 $F(\varepsilon + \delta, u + h) - F(\varepsilon, u) = (\Delta(u + h) + (u + h)^3 - \Delta u - u^3, (u + h)|_{\partial\Omega} - (\varepsilon + \delta) - u|_{\partial\Omega} + \varepsilon)$

$$= (\Delta h + 3u^{2}h, h|_{\partial\Omega} - \delta) + (3uh^{2} + h^{3}, 0).$$

Using that there exists a constant C > 0 such that $\|w\|_{C^{0,\alpha}(\overline{\Omega})} \leq C \|w\|_{C^{2,\alpha}(\overline{\Omega})}$, we estimate

$$\begin{split} \left\| (3uh^{2} + h^{3}, 0) \right\|_{Z} &= \left\| 3uh^{2} + h^{3} \right\|_{C^{0,\alpha}(\overline{\Omega})} \\ &\leq 9 \Big(3 \|u\|_{C^{0,\alpha}(\overline{\Omega})} \|h\|_{C^{0,\alpha}(\overline{\Omega})}^{2} + \|h\|_{C^{0,\alpha}(\overline{\Omega})}^{3} \Big) \\ &\leq 9C^{3}(3\|u\|_{C^{2,\alpha}(\overline{\Omega})} + \|h\|_{C^{2,\alpha}(\overline{\Omega})}) \|h\|_{C^{2,\alpha}(\overline{\Omega})}^{2} = \mathcal{O}\Big(\|h\|_{Y}^{2} \Big) = o\Big(\|(\delta, h)\|_{X \times Y} \Big) \end{split}$$

as $(\delta, h) \to 0$. So F is Fréchet differentiable and the derivative is given by (1).

It remains to show that the derivative is continuous. To do this, let $\varepsilon, \tilde{\varepsilon}, \delta \in X$ and $u, \tilde{u}, h \in Y$. We calculate

$$\begin{split} \|F'(\varepsilon+\tilde{\varepsilon},u+\tilde{u})[(\delta,h)] - F'(\varepsilon,u)[(\delta,h)]\|_{Z} \\ &= \left\| (3(2u\tilde{u}+\tilde{u}^{2})h,0) \right\|_{Z} \\ &\leq 27 \|\tilde{u}\|_{C^{0,\alpha}(\overline{\Omega})} \left(2\|u\|_{C^{0,\alpha}(\overline{\Omega})} + \|\tilde{u}\|_{C^{0,\alpha}(\overline{\Omega})} \right) \|h\|_{C^{0,\alpha}(\overline{\Omega})} \\ &\leq 27C^{3} \|\tilde{u}\|_{C^{2,\alpha}(\overline{\Omega})} \left(2\|u\|_{C^{2,\alpha}(\overline{\Omega})} + \|\tilde{u}\|_{C^{2,\alpha}(\overline{\Omega})} \right) \|h\|_{C^{2,\alpha}(\overline{\Omega})} = \mathbf{o}(\|(\delta,h)\|_{Z}) \end{split}$$

as $(\tilde{\varepsilon}, \tilde{u}) \to (0, 0)$ in Z, so F' is continuous in (ε, u) . As (ε, u) are chosen arbitrarily, F' is continuous.

Step 2: Applying the IFT. Recall that $F_u(0,0)$ is given by

$$F_u(0,0)[h] = (\Delta h, h|_{\partial\Omega}).$$

The auxiliary result below Problem 12 tells us that $F_u(0,0): C^{2,\alpha}(\overline{\Omega}) \to C^{0,\alpha}(\overline{\Omega}) \times C^{0,\alpha}(\partial\Omega)$ is continuously invertible.

We have verified all assumptions of the Implicit Function Theorem, so that we may now apply it to obtain $\varepsilon_0 > 0$ and a function $\hat{u} \in C^1((-\varepsilon_0, \varepsilon_0); Y)$ such that $F(\varepsilon, \hat{u}(\varepsilon)) = 0$ for all $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$. Setting $u_{\varepsilon} := \hat{u}(\varepsilon)$ completes the proof.

Problem 14 (Compact operators I):

Definition. Let X, Y be Banach spaces. An operator $T \in \mathcal{L}(X; Y)$ is called **compact** if for all bounded sequences (x_n) in X, the image sequence (Tx_n) has a convergent subsequence.

We denote by $\mathcal{K}(X;Y) \subseteq \mathcal{L}(X;Y)$ the set of compact operators.

Let X, Y, Z be Banach spaces.

- (a) Show that if $T \in \mathcal{L}(X;Y)$ has finite-dimensional range, i.e. $\dim(\operatorname{ran} X) < \infty$, then $T \in \mathcal{K}(X;Y)$.
- (b) Show that $\mathcal{K}(X;Y) \subseteq \mathcal{L}(X;Y)$ is a linear subspace.
- (c) Show that $\mathcal{K}(X;Y) \subseteq \mathcal{L}(X;Y)$ is closed.
- (d) Let $S \in \mathcal{L}(X;Y)$ and $T \in \mathcal{L}(Y;Z)$. Show that if S or T are compact, then TS is compact.
- (e) Let $T \in \mathcal{K}(X;Y)$ and $x_n \rightharpoonup x$ in X. Prove that $Tx_n \rightarrow Tx$.

Solution to problem 14:

- (a) <u>Proof</u>: Let (x_n) in X be a bounded sequence such that $||x_n|| \leq R$ for $n \in \mathbb{N}$. Then $||Tx_n|| \leq ||T|| ||x_n|| \leq ||T|| R$, so that $Tx_n \in TX$ is bounded. As TX has finite dimension, by the Heine-Borel theorem there exists a convergent subsequence of (Tx_n) .
- (b) <u>Proof</u>: Let $T, S \in \mathcal{K}(X; Y)$, $\mu \in \mathbb{R}$, and (x_n) be an arbitrary bounded sequence in X. Then there exists a subsequence (x_{n_k}) such that Tx_{n_k} and Sx_{n_k} converge. Then also $(T + \mu s)x_{n_k}$ converges. So $T + \mu S \in \mathcal{K}(X; Y)$.

(c) <u>Proof</u>: Let (x_k) be bounded in X with $||x_k|| \leq R$. Using compactness of the T_n and a diagonal sequence argument we find a subsequence (x_{k_l}) such that $T_n x_{k_l}$ converges for all $n \in \mathbb{N}$. We then estimate

$$\left\| Tx_{k_{l}} - Tx_{k_{j}} \right\| \leq \left\| Tx_{k_{l}} - T_{n}x_{k_{l}} \right\| + \left\| T_{n}x_{k_{l}} - T_{n}x_{k_{j}} \right\| + \left\| T_{n}x_{k_{j}} - Tx_{k_{j}} \right\| \leq 2\left\| T - T_{n} \right\| R + \left\| T_{n}x_{k_{l}} - T_{n}x_{k_{j}} \right\|$$

Fix $\varepsilon > 0$ and choose n so that $||T - T_n|| \leq \frac{\varepsilon}{4R}$. As $T_n x_{k_l}$ converges, there exists $N \in \mathbb{N}$ so that $||T_n x_{k_l} - T_n x_{k_j}|| \leq \frac{\varepsilon}{2}$ for $l, j \geq N$. Thus $||Tx_{k_l} - Tx_{k_j}|| \leq \varepsilon$ for $l, j \geq N$, showing that (Tx_{k_l}) is a Cauchy sequence. By completeness of $\mathcal{L}(X;Y)$ it converges. \Box

- (d) <u>Proof</u>: Assume first that S is compact and (x_n) is bounded in X. Then there exists a convergent subsequence $Sx_{n_k} \to y$. As T is bounded, we have $TSx_{n_k} \to Ty$, showing that also TS is compact. Now, if T is compact and (x_n) is bounded in X, then (Sx_n) is bounded in Y by continuity of S, so that by compactness of T there exists a convergent subsequence (TSx_{n_k}) . So again TS is compact.
- (e) *Proof:* First, we have $Tx_n \to Tx$ as $n \to \infty$. Let $\varphi \in Y'$. Then we have

$$\varphi(Tx_n) = \langle Tx_n, \varphi \rangle = \langle x_n, T'\varphi \rangle \to \langle x, T'\varphi \rangle = \langle Tx, \varphi \rangle = \varphi(Tx)$$

as $n \to \infty$, so that Tx_n converges weakly to Ty. Now let (x_{n_k}) be an arbitrary subsequence of (x_n) . By compactness, there exists a convergent subsequence $Tx_{n_{k_l}} \to y$. But then also $Tx_{n_{k_l}} \rightharpoonup y$, so that y = Tx, i.e. $Tx_{n_{k_l}} \to Tx$. It follows that $Tx_n \to Tx$.

Problem 15 (Compact operators II):

- (a) Show that the embedding $C^2([0,1]) \hookrightarrow C^1([0,1])$ is compact.
- (b) Let $k \in C([0, 1]^2)$. Show that the following map is compact:

$$T \colon C([0,1]) \to C([0,1]), \quad Tf(x) = \int_0^1 k(x,y)f(y) \, \mathrm{d}y$$

- (c) For $y \in \mathbb{R}$ define the translation $\tau_y \in \mathcal{L}(L^1(\mathbb{R}); L^1(\mathbb{R})), \tau_y f(x) = f(x y)$. Show that any $T \in \mathcal{L}(L^1(\mathbb{R}), L^1(\mathbb{R})) \setminus \{0\}$ which satisfies $\tau_y T = T \tau_y$ for all $y \in \mathbb{R}$ is not compact.
- (d) Show that $T: \ell^2 \to \ell^2, (x_n) \mapsto (\frac{x_n}{n})$ is compact.
- Hint for (a) and (b): Use the Arzelà-Ascoli theorem.

Solution to problem 15:

(a) <u>Proof</u>: Let $f_n \in C^2([0,1])$ be a bounded sequence, i.e. $||f_n||_{\infty}, ||f'_n||_{\infty}, ||f''_n||_{\infty} \leq R$. Then f_n, f'_n are Lipschitz continuous with Lipschitz constant R. In particular, they are uniformly bounded and uniformly equicontinuous. By the Arzelà-Ascoli theorem there exists a convergent subsequence $f_{n_k} \to f, f'_{n_k} \to g$ in C([0,1]) as $n \to \infty$. Since

$$f(b) - f(a) = \lim_{n \to \infty} f_n(b) - f_n(a) = \lim_{n \to \infty} \int_a^b f'_n(x) \, \mathrm{d}x = \int_a^b \lim_{n \to \infty} f'_n(x) \, \mathrm{d}x = \int_a^b g(x) \, \mathrm{d}x$$

We have $f \in C^1([0,1])$ and f' = g. So we have shown $f_{n_k} \to f$ in $C^1([0,1])$ as $n \to \infty$.

(b) <u>Proof</u>: Let $f_n \in C([0,1])$ be bounded, $||f_n||_{\infty} \leq R$. Let $\varepsilon > 0$. As $[0,1]^2$ is compact, k is uniformly continuous, so there exists $\delta > 0$ such that for $x_1, x_2, y_1, y_2 in[0,1]$ with $|x_1 - x_2|, |y_1 - y_2| < \delta$ we have $|k(x_1, y_1) - k(x_2, y_2)| < \varepsilon$. For $x_1, x_2 \in [0,1]$ with $|x_1 - x_2| < \delta$ we estimate

$$|Tf_n(x_1) - Tf_n(x_2)| \le \int_0^1 |k(x_1, y)f_n(y) - k(x_2, y)f_n(y)| \, \mathrm{d}y \le \varepsilon R,$$

showing that the Tf_n are uniformly equicontinuous. Since $||Tf_n|| \leq ||k||_{\infty}R$ they are also uniformly bounded. Hence the Arzelà-Ascoli theorem tells us that (Tf_n) has a uniformly convergent subsequence.

(c) <u>Proof</u>: Fix $f \in L^1(\mathbb{R}) \setminus \ker T$ and let $g \coloneqq Tf \in L^1(\mathbb{R}) \setminus \{0\}$. As

$$\|g\|_1 = \lim_{R \to \infty} \int_{-R}^{R} |g| \,\mathrm{d}x$$

there exists R > 0 such that

$$\int_{-R}^{R} |g| \, \mathrm{d}x \ge \frac{3}{4} \|g\|_{1}.$$

We now choose $f_n \coloneqq f(\cdot - 2nR)$ for $n \in \mathbb{N}$. Then f_n is bounded in $L^1(\mathbb{R})$ with $||f_n||_1 = ||f||$ for $n \in \mathbb{N}$. However, Tf_n does not admit convergent subsequences. In fact, for $m, n \in \mathbb{N}$ with $m \neq n$ we estimate

$$\begin{aligned} \|Tf_n - Tf_m\|_1 &= \|T\tau_{2nR}f - T\tau_{2mR}f\|_1 \\ &= \|\tau_{2nR}Tf - \tau_{2mR}Tf\|_1 \\ &= \|g(\cdot - 2nR) - g(\cdot - 2mR)\|_1 \\ &= \int_{(2n-1)R}^{2n+1R} |g(x - 2nR) - g(x - 2mR)| \, \mathrm{d}x + \int_{(2m-1)R}^{2m+1R} |g(x - 2nR) - g(x - 2mR)| \, \mathrm{d}x \\ &\geq \int_{-R}^{R} |g(x)| - |g(x + 2(n - m)R)| \, \mathrm{d}x + \int_{-R}^{R} |g(x)| - |g(x + 2(m - n)R)| \, \mathrm{d}x \\ &\geq 2 \int_{-R}^{R} |g(x)| \, \mathrm{d}x - 2 \int_{\mathbb{R} \setminus (-R,R)} |g(x)| \, \mathrm{d}x \geq \|g\|_1 > 0. \end{aligned}$$

(d) Proof: For $x \in \ell^2$ define the operator $T_k \colon \ell^2 \to \ell^2$ by

$$(T_k x)_n = \begin{cases} \frac{x_n}{n}, & n < k, \\ 0, & n \ge k \end{cases}$$

Then $T_k \in \mathcal{L}(\ell^2; \ell^2)$ is compact (as it has finite-dimensional range) and satisfies $||T - T_k|| = \frac{1}{k}$ for all k, so that $T = \lim_{k \to \infty} T_k$ is also compact.