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Problem 13:
Let n ∈ N. Consider a smooth bounded domain Ω ⊆ Rn and, for ε ∈ R, the boundary value problem{

−∆u = u3 in Ω,

u ≡ ε on ∂Ω.
(1)ε

Prove that for α ∈ (0, 1) there exists ε0 > 0 with the property that problem (1)ε admits a classical
solution uε ∈ C2,α(Ω) for ε ∈ (−ε0, ε0).

Hint: Use the auxiliary result below Problem 12.

Solution to problem 13:
We intend to apply the Implicit Function Theorem. To do this, define the function F : X × Y → Z with
X = R, Y = C2,α(Ω), Z = Cα(Ω) × Cα(∂Ω) given by

F (ε, u) = (∆u + u3, u|∂Ω − ε)

Then (ε, u) solve (1)ε if and only if F (ε, u) = (0, 0). Further, we have F (0, 0) = (0, 0).

For the estimates proving continuous differentiability, we need an algebraic property of the Hölder norms.

Lemma. For a, b ∈ C0,α(Ω), we have that ab ∈ C0,α(Ω) with

∥ab∥C0,α(Ω) ≤ 3∥a∥C0,α(Ω)∥b∥C0,α(Ω). (♢)

Proof of Lemma: Let a, b ∈ C0,α(Ω). First, we note that ab is a continuous function. We now
estimate the norms, recalling that

∥a∥C0,α(Ω) = ∥a∥∞ + [a]0,α = sup
x∈Ω

|a(x)| + sup
x ̸=y∈Ω

|a(x) − a(y)|
|x − y|α

.

We have ∥ab∥∞ ≤ ∥a∥∞∥b∥∞ ≤ ∥a∥C0,α(Ω)∥b∥C0,α(Ω) and

[ab]0,α = sup
x ̸=y∈Ω

|a(x)b(x) − a(y)b(y)|
|x − y|α

≤ sup
x ̸=y∈Ω

|a(x)||b(x) − b(y)| + |a(x) − a(y)||b(y)|
|x − y|α

≤ ∥a∥∞ sup
x ̸=y∈Ω

|b(x) − b(y)|
|x − y|α

+ ∥b∥∞ sup
x ̸=y∈Ω

|a(x) − a(y)|
|x − y|α

= ∥a∥∞[b]0,α + ∥b∥∞[a]0,α ≤ 2∥a∥C0,α(Ω)∥b∥C0,α(Ω),

and summing up both estimates, the lemma is proved.

Step 1: Fréchet differentiability of F . We claim that F is continuously Fréchet differentiable with

F ′(ε, u)[(δ, h)] = (∆h + 3u2h, h|∂Ω − δ)(1)

To show this, we estimate

F (ε + δ, u + h) − F (ε, u) = (∆(u + h) + (u + h)3 − ∆u − u3, (u + h)|∂Ω − (ε + δ) − u|∂Ω + ε)
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= (∆h + 3u2h, h|∂Ω − δ) + (3uh2 + h3, 0).

Using that there exists a constant C > 0 such that ∥w∥C0,α(Ω) ≤ C∥w∥C2,α(Ω), we estimate∥∥(3uh2 + h3, 0)
∥∥

Z
=

∥∥3uh2 + h3∥∥
C0,α(Ω)

≤ 9
(

3∥u∥C0,α(Ω)∥h∥2
C0,α(Ω) + ∥h∥3

C0,α(Ω)

)
≤ 9C3(3∥u∥C2,α(Ω) + ∥h∥C2,α(Ω))∥h∥2

C2,α(Ω) = O
(

∥h∥2
Y

)
= o

(
∥(δ, h)∥X×Y

)
as (δ, h) → 0. So F is Fréchet differentiable and the derivative is given by (1).

It remains to show that the derivative is continuous. To do this, let ε, ε̃, δ ∈ X and u, ũ, h ∈ Y . We
calculate

∥F ′(ε + ε̃, u + ũ)[(δ, h)] − F ′(ε, u)[(δ, h)]∥Z

=
∥∥(3(2uũ + ũ2)h, 0)

∥∥
Z

≤ 27∥ũ∥C0,α(Ω)

(
2∥u∥C0,α(Ω) + ∥ũ∥C0,α(Ω)

)
∥h∥C0,α(Ω)

≤ 27C3∥ũ∥C2,α(Ω)

(
2∥u∥C2,α(Ω) + ∥ũ∥C2,α(Ω)

)
∥h∥C2,α(Ω) = o(∥(δ, h)∥Z)

as (ε̃, ũ) → (0, 0) in Z, so F ′ is continuous in (ε, u). As (ε, u) are chosen arbitrarily, F ′ is continuous.

Step 2: Applying the IFT. Recall that Fu(0, 0) is given by

Fu(0, 0)[h] = (∆h, h|∂Ω).

The auxiliary result below Problem 12 tells us that Fu(0, 0) : C2,α(Ω) → C0,α(Ω) × C0,α(∂Ω) is continu-
ously invertible.

We have verified all assumptions of the Implicit Function Theorem, so that we may now apply it to
obtain ε0 > 0 and a function û ∈ C1((−ε0, ε0); Y ) such that F (ε, û(ε)) = 0 for all ε ∈ (−ε0, ε0). Setting
uε := û(ε) completes the proof.

Problem 14 (Compact operators I):

Definition. Let X, Y be Banach spaces. An operator T ∈ L(X; Y ) is called compact if for all bounded
sequences (xn) in X, the image sequence (Txn) has a convergent subsequence.
We denote by K(X; Y ) ⊆ L(X; Y ) the set of compact operators.

Let X, Y, Z be Banach spaces.
(a) Show that if T ∈ L(X; Y ) has finite-dimensional range, i.e. dim(ran X) < ∞, then T ∈ K(X; Y ).

(b) Show that K(X; Y ) ⊆ L(X; Y ) is a linear subspace.

(c) Show that K(X; Y ) ⊆ L(X; Y ) is closed.

(d) Let S ∈ L(X; Y ) and T ∈ L(Y ; Z). Show that if S or T are compact, then TS is compact.

(e) Let T ∈ K(X; Y ) and xn ⇀ x in X. Prove that Txn → Tx.

Solution to problem 14:
(a) Proof: Let (xn) in X be a bounded sequence such that ∥xn∥ ≤ R for n ∈ N. Then ∥Txn∥ ≤

∥T∥∥xn∥ ≤ ∥T∥R, so that Txn ∈ TX is bounded. As TX has finite dimension, by the Heine-Borel
theorem there exists a convergent subsequence of (Txn).

(b) Proof: Let T, S ∈ K(X; Y ), µ ∈ R, and (xn) be an arbitrary bounded sequence in X. Then there
exists a subsequence (xnk

) such that Txnk
and Sxnk

converge. Then also (T + µs)xnk
converges.

So T + µS ∈ K(X; Y ).
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(c) Proof: Let (xk) be bounded in X with ∥xk∥ ≤ R. Using compactness of the Tn and a diagonal
sequence argument we find a subsequence (xkl

) such that Tnxkl
converges for all n ∈ N. We then

estimate∥∥Txkl
− Txkj

∥∥ ≤ ∥Txkl
− Tnxkl

∥ +
∥∥Tnxkl

− Tnxkj

∥∥ +
∥∥Tnxkj

− Txkj

∥∥ ≤ 2∥T − Tn∥R +
∥∥Tnxkl

− Tnxkj

∥∥.

Fix ε > 0 and choose n so that ∥T − Tn∥ ≤ ε
4R . As Tnxkl

converges, there exists N ∈ N so that∥∥Tnxkl
− Tnxkj

∥∥ ≤ ε
2 for l, j ≥ N . Thus

∥∥Txkl
− Txkj

∥∥ ≤ ε for l, j ≥ N , showing that (Txkl
) is a

Cauchy sequence. By completeness of L(X; Y ) it converges.

(d) Proof: Assume first that S is compact and (xn) is bounded in X. Then there exists a convergent
subsequence Sxnk

→ y. As T is bounded, we have TSxnk
→ Ty, showing that also TS is compact.

Now, if T is compact and (xn) is bounded in X, then (Sxn) is bounded in Y by continuity of
S, so that by compactness of T there exists a convergent subsequence (TSxnk

). So again TS is
compact.

(e) Proof: First, we have Txn ⇀ Tx as n → ∞. Let φ ∈ Y ′. Then we have

φ(Txn) = ⟨Txn, φ⟩ = ⟨xn, T ′φ⟩ → ⟨x, T ′φ⟩ = ⟨Tx, φ⟩ = φ(Tx)

as n → ∞, so that Txn converges weakly to Ty. Now let (xnk
) be an arbitrary subsequence of (xn).

By compactness, there exists a convergent subsequence Txnkl
→ y. But then also Txnkl

⇀ y, so
that y = Tx, i.e. Txnkl

→ Tx. It follows that Txn → Tx.

Problem 15 (Compact operators II):
(a) Show that the embedding C2([0, 1]) ↪→ C1([0, 1]) is compact.

(b) Let k ∈ C([0, 1]2). Show that the following map is compact:

T : C([0, 1]) → C([0, 1]), T f(x) =
∫ 1

0
k(x, y)f(y) dy

(c) For y ∈ R define the translation τy ∈ L(L1(R); L1(R)), τyf(x) = f(x − y). Show that any
T ∈ L(L1(R), L1(R)) \ {0} which satisfies τyT = Tτy for all y ∈ R is not compact.

(d) Show that T : ℓ2 → ℓ2, (xn) 7→ ( xn

n ) is compact.
Hint for (a) and (b): Use the Arzelà-Ascoli theorem.

Solution to problem 15:
(a) Proof: Let fn ∈ C2([0, 1]) be a bounded sequence, i.e. ∥fn∥∞, ∥f ′

n∥∞, ∥f ′′
n ∥∞ ≤ R. Then fn, f ′

n

are Lipschitz continuous with Lipschitz constant R. In particular, they are uniformly bounded
and uniformly equicontinuous. By the Arzelà-Ascoli theorem there exists a convergent subsequence
fnk

→ f, f ′
nk

→ g in C([0, 1]) as n → ∞. Since

f(b) − f(a) = lim
n→∞

fn(b) − fn(a) = lim
n→∞

∫ b

a

f ′
n(x) dx =

∫ b

a

lim
n→∞

f ′
n(x) dx =

∫ b

a

g(x) dx

We have f ∈ C1([0, 1]) and f ′ = g. So we have shown fnk
→ f in C1([0, 1]) as n → ∞.

(b) Proof: Let fn ∈ C([0, 1]) be bounded, ∥fn∥∞ ≤ R. Let ε > 0. As [0, 1]2 is compact, k is uniformly
continuous, so there exists δ > 0 such that for x1, x2, y1, y2in[0, 1] with |x1 − x2|, |y1 − y2| < δ we
have |k(x1, y1) − k(x2, y2)| < ε. For x1, x2 ∈ [0, 1] with |x1 − x2| < δ we estimate

|Tfn(x1) − Tfn(x2)| ≤
∫ 1

0
|k(x1, y)fn(y) − k(x2, y)fn(y)| dy ≤ εR,

showing that the Tfn are uniformly equicontinuous. Since ∥Tfn∥ ≤ ∥k∥∞R they are also uni-
formly bounded. Hence the Arzelà-Ascoli theorem tells us that (Tfn) has a uniformly convergent
subsequence.
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(c) Proof: Fix f ∈ L1(R) \ ker T and let g := Tf ∈ L1(R) \ {0}. As

∥g∥1 = lim
R→∞

∫ R

−R

|g| dx

there exists R > 0 such that ∫ R

−R

|g| dx ≥ 3
4∥g∥1.

We now choose fn := f( · − 2nR) for n ∈ N. Then fn is bounded in L1(R) with ∥fn∥1 = ∥f∥ for
n ∈ N. However, Tfn does not admit convergent subsequences. In fact, for m, n ∈ N with m ̸= n
we estimate

∥Tfn − Tfm∥1 = ∥Tτ2nRf − Tτ2mRf∥1
= ∥τ2nRTf − τ2mRTf∥1
= ∥g( · − 2nR) − g( · − 2mR)∥1

=
∫ 2n+1R

(2n−1)R

|g(x − 2nR) − g(x − 2mR)| dx +
∫ 2m+1R

(2m−1)R

|g(x − 2nR) − g(x − 2mR)| dx

≥
∫ R

−R

|g(x)| − |g(x + 2(n − m)R)| dx +
∫ R

−R

|g(x)| − |g(x + 2(m − n)R)| dx

≥ 2
∫ R

−R

|g(x)| dx − 2
∫
R\(−R,R)

|g(x)| dx ≥ ∥g∥1 > 0.

(d) Proof: For x ∈ ℓ2 define the operator Tk : ℓ2 → ℓ2 by

(Tkx)n =
{

xn

n , n < k,

0, n ≥ k

Then Tk ∈ L(ℓ2; ℓ2) is compact (as it has finite-dimensional range) and satisfies ∥T − Tk∥ = 1
k for

all k, so that T = lim
k→∞

Tk is also compact.
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