Webrelaunch 2020

Classical Methods for Partial Differential Equations (Wintersemester 2019/20)


Die Einsicht findet am 9. Juni 2020 statt. Alle betreffenden Studierenden wurden per E-Mail persönlich informiert.

Die Noten wurden bereits im Campus-System verbucht und veröffentlicht. Das ist geschehen, um etwaige Nachteile für Sie zu verhindern.

Sollten im Nachgang der Klausureinsicht am 9. Juni noch Änderungen bei den bereits veröffentlichten Noten erforderlich werden, können diese vorgenommen werden.

Bei Rückfragen wenden Sie sich bitte an: marion.ewald@kit.edu

Vorlesung: Dienstag 11:30-13:00 SR 2.066
Donnerstag 11:30-13:00 SR -1.012 (UG)
Übung: Mittwoch 14:00-15:30 Redtenbacher-Hörsaal
Dozent Prof. Dr. Michael Plum
Sprechstunde: Kontakt via E-Mail.
Zimmer 3.028 Kollegiengebäude Mathematik (20.30)
Email: michael.plum@kit.edu
Übungsleiterin M.Sc. Zihui He
Sprechstunde: by appointment
Zimmer 3.030 Kollegiengebäude Mathematik (20.30)
Email: zihui.he@kit.edu

A differential equation is a relation between an unknown function (to be determined) and its derivatives. While for ordinary differential equations the unknown function depends on a single independent variable, it depends on several variables for partial differential equations.

A huge variety of processes in science and technology is described by partial differential equations, which therefore belong to the most important objects of investigation in Applied Mathematics.

The number of phenomena occurring in the context of partial differential equations, and the number of methods and techniques to investigate them, is by far too complex to be the content of a one semester course. The lecture course can therefore only be of an introductory type. Topics to be treated are e.g. the classical wave-, Poisson-, and heat equation, maximum principles, separation of variables, classification of quasilinear second-order equations and first-order systems, normal forms, a fixed-point approach for second-order hyperbolic equations. Strong emphasis will be put on many examples from physics and engineering.

The lecture course addresses students in their fifth semester (third year) or higher, with substantial knowledge in analysis and linear algebra. It is suitable for students of mathematics, and for students of other subjects who have strong mathematical interests.

The lectures will be accompanied by exercise lessons. Attendance of these exercises is strongly recommended to all participants.

As already mentioned, this lecture course can cover only a small portion of the overall topic of partial differential equations. Deeper knowledge can be aquired in further subsequent courses.

Preliminary unofficial and uncorrected version: script
Exercise Sheets:
The first exercise class will be on 23.10.2019!
Exercise sheet 1, to be explained on 23.10.2019
Exercise sheet 2, to be explained on 30.10.2019
Exercise sheet 3, to be explained on 06.11.2019
Exercise sheet 4, to be explained on 13.11.2019
Exercise sheet 5, to be explained on 20.11.2019
Exercise sheet 6, to be explained on 27.11.2019
Exercise sheet 7, to be explained on 04.12.2019
Exercise sheet 8, to be explained on 11.12.2019
Exercise sheet 9, to be explained on 18.12.2019, solution ex.30
Exercise sheet 10, to be explained on 08.01.2020
Exercise sheet 11, to be explained on 15.01.2020
Exercise sheet 12, to be explained on 22.01.2020
Exercise sheet 13, to be explained on 29.01.2020
Exercise sheet 14, to be explained on 05.02.2020
Holiday exercise sheet


exam sheet

SS2020: The examination will be in the form of a written exam, which takes place on 24.09.2020, 16:00-18:30, in the 30.22 Gaede-Hörsaal. The exam can be registered in the CAMPUS system from 01.05.2020 to 01.08.2020. The deregistration is possible until 23.09.2020. If you couldn't find the exam in your CAMPUS system, please register with the student office.

05.10.2020, 11:00-12:00, math building 20.30.
Please sign and bring the Corona declaration.



Evans, L. C.: Partial Differential Equations; Graduate Studies in Mathematics 19, American Mathematical Society.
John, F.: Partial Differential Equations; Springer.
Copson, E. T.: Partial Differential Equations; Cambridge University Press.
Courant, R., Hilbert, D.: Methods of Mathematical Physics, Vol. I + II; Wiley Classics.
Hellwig, G.: Partial Differential Equations; Teubner.

For those who understand German (or want to learn it):

Hellwig, G.: Partielle Differentialgleichungen; Teubner.
Leis, R.: Vorlesungen über partielle Differentialgleichungen zweiter Ordnung; Bibliographisches Institut, Mannheim.