Institute for Analysis Prof. Dr. Michael Plum

M.Sc. Zihui He

Classical Methods for Partial Differential Equations

Exercise sheet 13

Exercise 46

Let $\Omega \subseteq \mathbb{R}^n$ be a bounded and simply connected Lipschitz domain and let $r \in \mathcal{C}(\overline{\Omega}, \mathbb{R})$. Analogously as in the lecture, derive the Euler-Lagrange equations for the following variational problems:

- 1. minimize $J[u] = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 ru\right) dx$ on the set $\{u \in \mathcal{C}^2(\overline{\Omega}) : u = 0 \text{ on } \partial\Omega\},$
- 2. minimize $J[u] = \int_{\Omega} \left(\frac{1}{2} \left| \nabla u \right|^2 ru \right) dx$ on the set $C^2(\overline{\Omega})$.

Exercise 47

Show that the functional

$$J[u] := \int_0^1 \left(\frac{1}{2}x^2(u'(x))^2 - u(x)\right) dx$$

admits no minimum in $\{u \in C^2([0,1]) \mid u(0) = u(1) = 0\}.$

Exercise 48

Let $\Omega \subseteq \mathbb{R}^n$ be a domain and $\widetilde{a} \in \mathcal{C}^1(\Omega \times \Omega, \mathbb{R})$, $\gamma \in \mathcal{C}(\Omega \times \Omega \times \mathbb{R}, \mathbb{R})$ and $\sigma \in \{-1, 1\}$. Transform the differential equation

$$\frac{\partial^2 u}{\partial x^2} = \widetilde{a}(x, y) \frac{\partial u}{\partial x} + \sigma \frac{\partial u}{\partial y} + \gamma(x, y, u) ,$$

into the normal form

$$\frac{\partial^2 v}{\partial x^2} = \sigma \frac{\partial v}{\partial y} + \widetilde{\gamma}(x, y, v) \,.$$

Hint: Use a transformation of the form u = vw, where w is a positive, smooth function.

Exercise 49 (Legendre Transformation)

Let $u \in C^2(\mathbb{R}^2)$ be a solution of

$$a\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \frac{\partial^2 u}{\partial x^2} + 2b\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \frac{\partial^2 u}{\partial x \partial y} + c\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \frac{\partial^2 u}{\partial y^2} = 0$$

with

$$\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 u}{\partial y^2} \neq \left(\frac{\partial^2 u}{\partial x \partial y}\right)^2.$$

Introduce the new independent variables ξ, μ and a new function $\phi(\xi, \mu)$ by setting

$$\xi = \frac{\partial u}{\partial x}(x,y) \quad \mu = \frac{\partial u}{\partial y}(x,y) \quad \phi(x,y) = x\frac{\partial u}{\partial x}(x,y) + y\frac{\partial u}{\partial y}(x,y) - u(x,y).$$

Show that ϕ satisfies the (linear !) equations

$$\frac{\partial \phi}{\partial \xi}(\xi, \mu) = x, \qquad \frac{\partial \phi}{\partial \mu}(\xi, \mu) = y,$$

$$a(\xi,\mu)\frac{\partial^2\phi}{\partial\mu^2}(\xi,\mu) \ - \ 2b(\xi,\mu)\frac{\partial^2\phi}{\partial\mu\partial\xi}(\xi,\mu) \ + \ c(\xi,\mu)\frac{\partial^2\phi}{\partial\xi^2}(\xi,\mu) \ = \ 0.$$