Institut für Analysis Prof. Dr. Michael Plum

Dipl.-Math.techn. Rainer Mandel

Nonlinear Boundary Value Problems: 3rd problem sheet

Exercise 8

Consider the following nonlinear boundary value problem on a bounded domain Ω

$$A(u,v) := \int_{\Omega} \left[a(\nabla u) \cdot \nabla v + \beta \sum_{i=1}^{n} b_i(u)(\partial_i u)v + c(u)v \right] dx = \int_{\Omega} fv \, dx \quad \forall v \in H_0^1(\Omega)$$

where $f \in L^2(\Omega), \beta \in \mathbb{R}$ and

- i) a is a monotone vectorfield satisfying the conditions i)-iii) from the lecture,
- ii) $b_1, \ldots, b_n : \mathbb{R} \to \mathbb{R}$ are bounded and continuous,
- iii) $c: \mathbb{R} \to \mathbb{R}$ is continuous and the function $z \mapsto c(z)z$ is bounded from below.

Prove that for small enough $|\beta|$ the following coercivity condition holds:

$$A(u,u) \ge \delta_0 ||u||_{H_0^1(\Omega)}^2 - \mu_0 \qquad \forall u \in H_0^1(\Omega)$$

for some $\delta_0 > 0$, $\mu_0 \in \mathbb{R}$.

Exercise 9

Let the assumptions on a, b_1, \ldots, b_n, c from exercise 8 hold. Generalise the Galerkin method from the lecture to prove existence of a solution $u \in H_0^1(\Omega)$ of the boundary value problem

$$\int_{\Omega} \left[a(\nabla u) \cdot \nabla v + \beta \sum_{i=1}^{n} b_i(u)(\partial_i u)v + c(u)v \right] dx = \int_{\Omega} f v \, dx \quad \forall v \in H_0^1(\Omega)$$

given in exercise 8 provided $|\beta|$ is sufficiently small. You may argue along the followings lines:

- 1. Prove existence of a Galerkin approximation $u_k \in V_k = \text{span}\{w_1, \dots, w_k\}$ where $\{w_1, w_2, \dots\}$ is an orthonormal basis of $H_0^1(\Omega)$.
- 2. Use the estimate of exercise 8 to show that the sequence (u_k) has a weakly convergent subsequence.
- 3. Show that the weak limit $u \in H_0^1(\Omega)$ is a solution of the above problem. To this end use the hints given below to prove that there is a $\xi \in L^2(\Omega)^n$ and a subsequence $(v_j) := (u_{k_j})$ of (u_k) which satisfies:
 - i) $\int_{\Omega} a(\nabla v_j) \cdot \nabla \phi \, dx \to \int_{\Omega} \xi \cdot \nabla \phi \, dx$ for all $\phi \in H_0^1(\Omega)$.
 - ii) $\int_{\Omega} [\xi \cdot \nabla \phi + \beta \sum_{i=1}^{n} b_i(u)(\partial_i u)\phi + c(u)\phi] dx = \int_{\Omega} f \phi dx \text{ for all } \phi \in H_0^1(\Omega).$
 - iii) $\int_{\Omega} a(\nabla v_j) \cdot \nabla v_j \, dx \to \int_{\Omega} \xi \cdot \nabla u \, dx$.
 - iv) $\int_{\Omega} (\xi a(\nabla \phi)) \cdot (\nabla u \nabla \phi) dx \ge 0$ for all $\phi \in H_0^1(\Omega)$.

Hints:

- 1. $H_0^1(\Omega)$ imbeds compactly into $L^2(\Omega)$. In particular if $u_k \to u$ then there is a subsequence (u_{k_j}) of (u_k) such that $u_{k_j} \to u$ in $L^2(\Omega)$.
- 2. If $g_k \to g$ in $L^p(\Omega)$ then there is a subsequence (g_{k_j}) and a function $G \in L^p(\Omega)$ such that $g_{k_j} \to g$ pointwise almost everywhere and $|g_{k_j}| \leq G$.