Nonlinear Boundary Value Problems: 12th problem sheet

Exercise 29

Let $\Omega \subset \mathbb{R}^n$ be a bounded nonempty domain and let 1 .

a) Consider the nonlinear boundary value problem

 $-\Delta u = |u|^{p-1}u$ in Ω , u = 0 on $\partial\Omega$.

Find a functional $I: H_0^1(\Omega) \to \mathbb{R}$ and a subset $V \subset H_0^1(\Omega)$ such that minimization of I over V gives rise to a nontrivial weak solution of the above problem.

b) Which functional and which subset $V \subset H_0^1(\Omega)$ should be considered seeking for a weak solution of

$$-\operatorname{div}(A(x)\nabla u) + V(x)u = \Gamma(x)|u|^{p-1}u \text{ in }\Omega, \quad u = 0 \text{ on }\partial\Omega$$

when A(x) is uniformly positive definite in Ω and $V, \Gamma \in L^{\infty}(\Omega)$ satisfy $V, \Gamma \geq 0$ almost everywhere and $\Gamma \neq 0$?

Exercise 30

Let $\Omega \subset \mathbb{R}^n$ be a nonempty bounded domain and let $K \subset H_0^1(\Omega)$ be closed and convex. For a uniformly positive definite matrix $A \in L^{\infty}(\Omega)^{n \times n}$ and $c \in L^{\infty}(\Omega)$ such that $c(x) \geq c_0 > 0$ consider the functional

$$I: H_0^1(\Omega) \to \mathbb{R}, u \mapsto \int_{\Omega} \left(\frac{1}{2} \nabla u^T A(x) \nabla u + \frac{1}{2} c(x) u^2 - f(x) u\right) dx.$$

- a) Assume that I has a minimizer u_0 over K. Find a variational inequality für u_0 .
- b) Determine constants A, B > 0 such that $I(u) \ge A ||u||_{H^1_{\alpha}(\Omega)}^2 B$.
- c) Determine a radius R > 0 in terms of A, B such that the additional assumption $\{v \in H_0^1(\Omega) : \|v\|_{H_0^1(\Omega)} \leq R\} \subset K$ implies $u_0 \in \mathring{K}$. Which variational equation does u_0 satisfy in this case?