Webrelaunch 2020

Analysis (Fourier Analysis) (Wintersemester 2011/12)

  • Dozent*in: Dr. Kaori Nagato-Plum
  • Veranstaltungen: Proseminar (0120300)
  • Semesterwochenstunden: 2
  • Hörerkreis: Mathematik (Bachelor und Lehramt) (ab 3. Semester)
Termine
Proseminar: Mittwoch 14:00-15:30 Seminarraum Z2 in Gebäude 01.85 Beginn: 19.10.2011

Aus dem ersten Studienjahr sind die Taylorreihen bekannt, durch die eine (sehr glatte) Funktion in der Nähe eines Entwicklungspunktes als Potenzreihe dargestellt werden kann. Die gegebene Funktion wird damit durch Polynome auf einem Intervall gleichmäßig approximiert wird. Wenn man jedoch eine auf den reellen Zahlen definierte 2\pi-periodische Funktion betrachtet, dann würde man sich eine gleichmäßige Approximation durch periodische Funktionen wünschen. Es liegt nahe, dazu Reihen der Form \sum_n a_n \cos(n x) + b_n \sin(nx) zu verwenden. Solche Funktionenreihen nennt man Fourierreihen, zu Ehren von Joseph Fourier, der sie Anfang des 19. Jahrhunderst systematisch zur Behandlung der Wärmeleitungsgleichung verwendete. Allerdings wurden diese Reihen schon im 18. Jahrhundert von Euler und anderen benutzt, um Schwingungsphänomene zu untersuchen. In diesem Fall beschreiben die einzelnen Sinus- oder Kosinusfunktionen reine Schwingungen, und die Fourierreihe ist eine Überlagerung dieser reinen Schwingungen. Erstaunlicherweise haben Fourierreihen noch zahllose andere Anwendungen in (fast?) allen Gebieten der Mathematik und darüberhinaus. Auf der anderen Seite hat ihre Untersuchung der Entwicklung der Analysis bedeutende Impulse gegeben, insbesondere weil ihr Konvergenzverhalten weitaus komplexer und interessanter ist, als etwa das der Taylorreihen.

Im Proseminar behandeln wir einige unterschiedliche Konvergenzsätze, die ausgehend vom ersten Studienjahr zugänglich sind, sowie eine Reihe von Anwendungen.

Für das Seminar werden die Vorlesungen Analysis I+II und Lineare Algebra I+II vorausgesetzt.

Literaturhinweise

  • Elias M. Stein, Rami Shakarchi: Fourier Analysis, an Introduction. Princeton, 2003. (Chapter 1-4, 7.1)