Sobolev spaces: tutorials
Exercise sheet 06 with solution

Exercise 1.
Let a bounded open Lipschitz domain $\Omega \subset \mathbb{R}^N$ and a function $f \in L^2(\Omega)$. We define the Poisson’s equation: find $u \in H^1(\Omega)$ such that

$$\begin{cases}
\Delta u = f & \text{in } \Omega \\
\partial_\nu u = 0 & \text{on } \partial \Omega
\end{cases}$$

(1)

where ∂_ν is the normal derivative on the boundary $\partial \Omega$.

1. Compute the weak formulation of Eq. (1).

2. Assuming that a solution of the weak formulation of Eq. (1) exists, show that it cannot be unique in $H^1(\Omega)$.

3. Show that $\int_{\Omega} f(x) \, dx = 0$ is a necessary condition for Eq. (1) to admit a weak solution in $H^1(\Omega)$.

We define the subspace of $L^2(\Omega)$ of functions with zero mean and the corresponding subspace in $H^1(\Omega)$ by

$$L^2_0(\Omega) := \left\{ u \in L^2(\Omega) \mid \int_{\Omega} u(x) \, dx = 0 \right\} \quad \text{and} \quad V = L^2_0(\Omega) \cap H^1(\Omega).$$

4. Show that we have the orthogonal decomposition $H^1(\Omega) = \text{span}\{x \mapsto 1\} \oplus V$.

5. Show that the bilinear form $\langle u, v \rangle_V := \int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx$ is an inner product on the space V and that the associated norm $\|u\|_V = \sqrt{\langle u, u \rangle_V}$ is equivalent to the norm $\langle \cdot, \cdot \rangle_{1,2}$.

6. For $f \in L^2_0(\Omega)$, show that the weak formulation of Eq. (1) has a unique solution in V and that there exists $C > 0$ such that $\|u\|_V \leq C \|f\|_2$.

Solution 1.

Question 1. As usual, we multiply by $v \in H^1(\Omega)$ and use the divergence theorem to get the following weak formulation: find $u \in H^1(\Omega)$ such that

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx = \int_{\Omega} f(x) v(x) \, dx, \quad \forall v \in H^1(\Omega).$$

(2)
We verify the hypothesis of the Lax-Milgram theorem on the Hilbert space \mathcal{H} so there exists and by definition of the norms definiteness part, we take span and, if u is constant and the only constant in Ω, therefore, for solution to exits we must have f with zero mean.

Question 3. Take $v \equiv 1 \in \mathcal{H}$ in Eq. (2) to get
$$0 = \int_\Omega f(x) \, dx.$$ Therefore, for solution to exits we must have f with zero mean.

Question 4. The sum is direct because for $u \in \mathcal{H}$, we have
$$u = \frac{1}{|\Omega|} \int_\Omega u(x) \, dx + u - \frac{1}{|\Omega|} \int_\Omega u(x) \, dx$$ and, if $u \in \text{span}\{x \mapsto 1\} \cap \mathcal{V}$, the function is constant and of zero mean so $u = 0$. The subspaces $\text{span}\{x \mapsto 1\}$ and \mathcal{V} are orthogonal, take $w \in \mathcal{V}$, we compute
$$\langle x \mapsto 1, w \rangle_{1,2} = \int_\Omega w(x) \, dx = 0.$$

Question 5. The bilinear form $\langle \cdot, \cdot \rangle_{\mathcal{V}}$ is symmetric and non-negative by definition. For the definiteness part, we take $u \in \mathcal{V}$ such that $\|u\|_{\mathcal{V}} = \sqrt{\langle u, u \rangle_{\mathcal{V}}} = 0$, this give $\nabla u = 0$ in Ω. So u is constant and the only constant in \mathcal{V} is 0 therefore $u = 0$. The bilinear form $\langle \cdot, \cdot \rangle_{\mathcal{V}}$ is an inner product.

Now let’s show that $\|\cdot\|_{\mathcal{V}}$ and $\|\cdot\|_{1,2}$ are equivalent. We directly have $\|u\|_{\mathcal{V}} \leq \|u\|_{1,2}$ for all $u \in \mathcal{V}$. For the converse inequality, using the Wirtinger inequality for \mathcal{V}, we get
$$\|u\|_2 = \left\| u - \frac{1}{|\Omega|} \int_\Omega u(x) \, dx \right\|_2 \leq C \|\nabla u\|_2 = C \|u\|_{\mathcal{V}},$$ and by definition of the norms $\langle \cdot, \cdot \rangle_{1,2}$ and we compute
$$\|u\|_{1,2}^2 = \|u\|_2^2 + \|\nabla u\|_2^2 \leq (C^2 + 1) \|\nabla u\|_2^2 = (C^2 + 1) \|u\|_{\mathcal{V}}^2.$$ so there exists $D > 1$ such that $\|u\|_{\mathcal{V}} \leq \|u\|_{1,2} \leq D \|u\|_{\mathcal{V}}$ for all $u \in \mathcal{V}$.

Question 6. We define the associated problem to Eq. (2) on the space \mathcal{V} by: find $u \in \mathcal{V}$ such that
$$\int_\Omega \nabla u(x) \cdot \nabla w(x) \, dx = \int_\Omega f(x) \, w(x) \, dx, \quad \forall w \in \mathcal{V}. \quad (3)$$ We verify the hypothesis of the Lax-Milgram theorem on the Hilbert space \mathcal{V}:
(i) we have $\left| \int_\Omega \nabla u(x) \cdot \nabla w(x) \, dx \right| \leq \|u\|_{\mathcal{V}} \|w\|_{\mathcal{V}}$ for $u, w \in \mathcal{V}$;
(ii) we have $\int_\Omega |\nabla u(x)|^2 \, dx \geq \|u\|_{\mathcal{V}}^2$ for $u \in \mathcal{V};$
(iii) we have \(|\int_\Omega f(x) w(x) \, dx| \leq \|f\|_2 \|w\|_2 \leq \|f\|_2 C \|w\|_V\) for \(w \in V\).

Using the Lax-Milgram theorem on Eq. (3), there exists a unique \(u \in V\) that satisfy Eq. (3) and \(\|u\|_V \leq C \|f\|_2\). Now, we show that the solution \(u\) of Eq. (3) is also a solution of Eq. (2), for \(v \in H^1(\Omega)\) from the decomposition \(H^1(\Omega) = \text{span}\{x \mapsto 1\} \oplus V\) there exists \((c, w) \in \text{span}\{x \mapsto 1\} \times V\) such that \(v = c + w\) and we compute

\[
\int_\Omega \nabla u(x) \cdot \nabla v(x) \, dx = \int_\Omega \nabla u(x) \cdot \nabla w(x) \, dx \quad (\nabla c = 0)
\]

\[
= \int_\Omega f(x) w(x) \, dx \quad (u \text{ solution of Eq. (3)})
\]

\[
= \int_\Omega f(x) v(x) \, dx. \quad \left(\int_\Omega f(x) \, dx = 0\right)
\]

So, for \(f \in L^2_0(\Omega)\), \(u\) is the unique solution in \(V\) that satisfy Eq. (2).

Remark 1. Using Lax-Milgram theorem, Eq. (3) has an unique solution for \(f \in L^2(\Omega)\) contrary to Eq. (2) how has a solution if, and only if, \(f \in L^2(\Omega)\) with zero mean and the solution is not unique in \(H^1(\Omega)\). We say that Eq. (3) is well-posed and Eq. (2) is ill-posed in the Hadamard sense, see en.wikipedia.org/wiki/Well-posed_problem.

Exercise 2.

Let \(I = (0, 2\pi)\). The optimal Wirtinger inequality in one dimension is

\[
\left\| f - \frac{1}{2\pi} \int_0^{2\pi} f(x) \, dx \right\|_2 \leq \|f\|_2, \quad \text{for } f \in H^1(I).
\]

1. Prove Eq. (4) for \(f \in C^\infty([0, 2\pi])\) using Fourier series.

2. Prove Eq. (4) for \(f \in H^1(I)\).

3. Characterize the functions that satisfy the equality of Eq. (4).

Solution 2.

Question 1. Since \(f \in C^\infty([0, 2\pi])\), the Fourier series of \(f\) and \(f'\) absolutely converge, and we have

\[
f(x) = a_0 + \sum_{n=1}^{+\infty} a_n \cos(nx) + b_n \sin(nx) \quad \text{and} \quad f'(x) = \sum_{n=1}^{+\infty} -n a_n \sin(nx) + n b_n \cos(nx).
\]

Using the orthogonal properties of the functions \(x \mapsto \cos(nx)\) and \(x \mapsto \sin(nx)\) on \([0, 2\pi]\), we compute

\[
\left\| f - \frac{1}{2\pi} \int_0^{2\pi} f(x) \, dx \right\|_2^2 = \left\| \sum_{n=1}^{+\infty} a_n \cos(n\cdot) + b_n \sin(n\cdot) \right\|_2^2
\]

\[
= \sum_{n=1}^{+\infty} \int_0^{2\pi} |a_n|^2 \cos^2(nx) + |b_n|^2 \sin^2(nx) \, dx
\]

\[
= \pi \sum_{n=1}^{+\infty} |a_n|^2 + |b_n|^2
\]
and
\[\| f' \|_2^2 = \left\| \sum_{n=1}^{+\infty} -n a_n \cos(n \cdot) + n b_n \sin(n \cdot) \right\|_2^2 = \sum_{n=1}^{+\infty} \int_0^{2\pi} n^2 |a_n|^2 \cos^2(n x) + n^2 |b_n|^2 \sin^2(n x) \, dx = \pi \sum_{n=1}^{+\infty} n^2 |a_n|^2 + n^2 |b_n|^2 \]

for \(n \geq 1 \), we have \(\pi \sum_{n=1}^{+\infty} |a_n|^2 + |b_n|^2 \leq \pi \sum_{n=1}^{+\infty} n^2 |a_n|^2 + n^2 |b_n|^2 \) which give
\[\left\| f - \frac{1}{2\pi} \int_0^{2\pi} f(x) \, dx \right\|_2 \leq \| f' \|_2, \quad \text{for } f \in C^\infty([0,2\pi]). \]

Question 2. By density, for \(f \in H^1(I) \), there exists a sequence \((f_k)_{k \in \mathbb{N}} \subset C^\infty([0,2\pi])^N \) such that \(f_k \to f \) as \(k \to +\infty \) in \(H^1(I) \). We directly have that \(f_k \to f \) and \(f_k' \to f' \) in \(L^2(I) \) as \(k \to +\infty \). For the convergence of the mean, we compute
\[\left| \int_0^{2\pi} f_k(x) \, dx - \int_0^{2\pi} f(x) \, dx \right| \leq \int_0^{2\pi} |f_k - f| \, dx \leq \sqrt{2\pi} \| f_k - f \|_2 \]
so \(f_k - \frac{1}{2\pi} \int_0^{2\pi} f_k(x) \, dx \to f - \frac{1}{2\pi} \int_0^{2\pi} f(x) \, dx \) as \(k \to +\infty \) in \(L^2(I) \). Therefore, by passing to the limit in \(\left\| f_k - \frac{1}{2\pi} \int_0^{2\pi} f_k(x) \, dx \right\|_2 \leq \| f_k' \|_2 \), we get
\[\left\| f - \frac{1}{2\pi} \int_0^{2\pi} f(x) \, dx \right\|_2 \leq \| f' \|_2, \quad \text{for } f \in H^1(I). \]

Question 3. From Question 1, we see that the functions \(x \mapsto 1, x \mapsto \cos(x) \), and \(x \mapsto \sin(x) \) realize the equality in Eq. (4) and that it remains true for any linear combination of the three functions. We define the subspace \(E \subset H^1(I) \) by
\[E = \text{span} \left(x \mapsto 1, x \mapsto \cos(x), x \mapsto \sin(x) \right) \]
and we want to show that \(f \in H^1(I) \) realize the equality of Eq. (4) if, and only if, \(f \in E \). If \(f \in E \) then \(f \in H^1(I) \) realize the equality of Eq. (4) is a direct computation. The reverse implication require a bit more works. First, we define the orthogonal complement \(W \subset H^1(I) \) such that \(H^1(I) = E \perp W \). The set \(W \cap C^\infty(I) \) is compose of function such that their Fourier series coefficient \(a_0 = a_1 = b_1 = 0 \). For such function, we can redo Question 1 and found an improved Wirtinger inequality of the form
\[\| w \|_2 \leq \frac{1}{2} \| w' \|_2, \quad \text{for } w \in W \cap C^\infty(I) \]
then, using Question 2 on \(W \), we get
\[\| w \|_2 \leq \frac{1}{2} \| w' \|_2, \quad \text{for } w \in W. \]
Assume \(f \in H^1(I) \) realize the equality in Eq. (4). We can write \(f = e + w \) with \((e, w) \in E \times W \) then we compute
\[\left\| e - \frac{1}{2\pi} \int_0^{2\pi} e(x) \, dx \right\|_2^2 + \| w \|_2^2 = \left\| f - \frac{1}{2\pi} \int_0^{2\pi} f(x) \, dx \right\|_2^2 \]

\[
\begin{align*}
\|f'\|^2_2 &= \|e'\|^2_2 + \|w'\|^2_2 \\
&\geq \left\| e - \frac{1}{2\pi} \int_0^{2\pi} e(x) \, dx \right\|^2_2 + 4 \|w\|^2_2
\end{align*}
\]

which give \(\|w\|_2 \geq 2 \|w\|_2\) so \(w = 0\) and \(f \in E\).