Travelling Waves, SS 2014
Exercise sheet 4

Exercise 1 (6 Points)

Assume there exists $\delta > 0$, $k > 0$, such that for all $w_0 \in H^1$ with $\|w_0\|_{H^1} \leq \delta$ the solution (w, μ) of

\[
\begin{align*}
 w_t &= Pw + \mu w_x + q(w) + \mu w_x, \\
 0 &= \Psi(w + u) = (u', w), \\
 w(x, 0) &= u_0(x) - u(x) =: w_0(x),
\end{align*}
\]

exists for all $t \geq 0$ and there is $\eta > 0$, such that

\[
\begin{align*}
 \|w(\cdot, t)\|_{H^1} &\leq k \|w_0\|_{H^1} \quad \forall t \geq 0, \\
 \|w(\cdot, t)\|_{H^1} &\leq ke^{-\eta t} \quad \forall t \geq 0, \\
 |\mu(t)| &\leq ke^{-\eta t} \quad \forall t \geq 0, \\
 \int_0^\infty |\mu(\tau)| d\tau &\leq k \|w_0\|_{H^1}.
\end{align*}
\]

Show the travelling wave (u, c) of $u_t = Au_{xx} + Bu_x + f(u)$ is asymptotically stable with asymptotic phase with respect to H^1-norm.

Deadline: Tuesday, July 1, at the beginning of the lecture.