Exercise 1 (6 Points)

Let \(f \in L^1_{\text{loc}}(\mathbb{R}^+, X) \), then define \(F(t) := \int_0^t f(s)ds \) and \(F_\infty := \lim_{t \to \infty} F(t) \) if the limit exists and \(F_\infty := 0 \) otherwise. Show

\[
\text{abs}(f) = \omega(F - F_\infty).
\]

You may use the following steps:

a) Suppose \(\text{abs}(f) < \infty \). Show \(\text{abs}(f) \geq \omega(F - F_\infty) \) for each of the cases

(i) \(\text{abs}(f) > 0 \),
(ii) \(\text{abs}(f) = 0 \),
(iii) \(\text{abs}(f) < 0 \).

b) Suppose \(\omega(F - F_\infty) < \infty \) and show \(\text{abs}(f) \leq \omega(F - F_\infty) \).

Exercise 2 (6 Points)

For \(t \geq 0 \) define \(f(t) = e^t e^t \cos(e^t) \). Then \(\omega(f) = \infty \) and show that \(\text{abs}(f) = 0 \).

Exercise 3 (6 Points)

Define \(f(t) = e^t \sin e^t \) for \(t \geq 0 \). Show that

\[
\text{hol}(\hat{f}) = -\infty < 0 = \text{abs}(f) < 1 = \omega(f).
\]

Discussion: Tuesday, November 24.