Webrelaunch 2020
Foto von Peter Lewintan

Dr. Peter Lewintan

  • Englerstraße 2
    76131 Karlsruhe

Aktuelles Lehrangebot
Semester Titel Typ
Sommersemester 2024 Vorlesung
Vorlesung
Wintersemester 2023/24 Vorlesung
Seminar

Forschungsinteressen

  • Partielle Differentialgleichungen
  • Korn Ungleichungen
  • Elastizitätstheorie
  • minimierende Kegel

ORCID -- ​MathSciNet -- zbMATH -- arXiv -- HAL -- cvgmt -- RG -- scopus -- googleScholar

Publikationen

26.) A. Sky, M. Neunteufel, P. Lewintan, P. Gourgiotis, A. Zilian, P. Neff: Novel H^\text{dev}(\text{Curl})-conforming elements on regular triangulations and Clough-Tocher splits for the planar relaxed micromorphic model. submitted, arXiv Preprint: 2405.14849.
25.) F. Gmeineder, P. Lewintan, J. Van Schaftingen: Limiting Korn-Maxwell-Sobolev inequalities for general incompatibilities. submitted, arXiv Preprint: 2405.10349
24.) A. Sky, M. Neunteufel, P. Lewintan, A. Zilian, P. Neff: Novel H(\text{symCurl})-conforming finite elements for the relaxed micromorphic sequence. Computer Methods in Applied Mechanics and Engineering 418 Part A (2024), 116494.
23.) P. Gourgiotis, G. Rizzi, P. Lewintan, D. Bernardini, A. Sky, A. Madeo, P. Neff: Green’s functions for the isotropic planar relaxed micromorphic model – concentrated force and concentrated couple. International Journal of Solids and Structures 292 (2024), 112700.
22.) M. Sarhil, L. Scheunemann, P. Lewintan, J. Schröder, P. Neff: A computational approach to identify the material parameters of the relaxed micromorphic model. Computer Methods in Applied Mechanics and Engineering 425 (2024), 116944.
21.) F. Gmeineder, P. Lewintan, P. Neff: Korn-Maxwell-Sobolev inequalities for general incompatibilities. Mathematical Models and Methods in Applied Sciences 34(03) (2024), pp. 523-570.
20.) M.V. d’Agostino, R. J. Martin, P. Lewintan, D. Bernardini, A. Danescu, P. Neff: On the representation of fourth and higher order anisotropic elasticity tensors in generalized continuum models. submitted. arXiv Preprint: 2401.08670.
19.) I.-D. Ghiba, P. Lewintan, A. Sky, P. Neff: An essay on deformation measures in isotropic thin shell theories. Bending versus curvature. submitted. arXiv Preprint: 2312.10928.
18.) F. Gmeineder, P. Lewintan, P. Neff: Optimal incompatible Korn-Maxwell-Sobolev inequalities in all dimensions. Calculus of Variations and Partial Differential Equations 62 (2023), no. 182.
17.) M.V. d’Agostino, G. Rizzi, H. Khan, P. Lewintan, A. Madeo, P. Neff: The consistent coupling boundary condition for the classical micromorphic model: existence, uniqueness and interpretation of parameters. Continuum Mechanics and Thermodynamics 34 (2022), pp. 1393–1431.
16.) P. Lewintan, P. Neff: L^p-trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 152 (2022), pp. 1477-1508.
15.) P. Lewintan, S. Müller, P. Neff: Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy. Calculus of Variations and Partial Differential Equations 60 (2021), no. 150, pp. 1–46.
14.) P. Lewintan: Matrix representation of a cross product and related curl-based differential operators in all space dimensions. Open Mathematics 19 (2021), no. 1, pp. 1330–1348.
13.) F. Bozorgnia, P. Lewintan: Decay estimates for solutions of evolutionary damped p-Laplace equations. Electronic Journal of Differential Equations 2021 (2021), no. 73, pp. 1–9.
12.) P. Lewintan, P. Neff: L^p-trace-free version of the generalized Korn inequality for incompatible tensor fields in arbitrary dimensions. Zeitschrift für Angewandte Mathematik und Physik 72 (2021), no. 127, pp. 1–14.
11.) I.-D. Ghiba, M. Bı̂rsan, P. Lewintan, P. Neff: A constrained Cosserat shell model up to order O(h^5): Modelling, existence of minimizers, relations to classical shell models and scaling invariance of the bending tensor. Journal of Elasticity 146 (2021), pp. 83–141.
10.) P. Lewintan, P. Neff: L^p-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with p-integrable exterior derivative. Comptes Rendus. Mathématique 359 (2021), no. 6, pp. 749–755.
9.) P. Lewintan, P. Neff: Nečas-Lions lemma revisited: An L^p-version of the generalized Korn inequality for incompatible tensor fields. Mathematical Methods in the Applied Sciences 44 (2021), pp. 11392–11403.
8.) M. M. Saem, P. Lewintan, P. Neff: On in-plane drill rotations for Cosserat surfaces. Proceedings of the Royal Society A 477 (2021), no. 20210158, pp. 1–18.
7.) I.-D. Ghiba, M. Bı̂rsan, P. Lewintan, P. Neff: The isotropic Cosserat shell model including terms up to O(h^5). Part II: Existence of minimizers. Journal of Elasticity 142 (2020), pp. 263–290.
6.) I.-D. Ghiba, M. Bı̂rsan, P. Lewintan, P. Neff: The isotropic Cosserat shell model including terms up to O(h^5). Part I: Derivation in matrix notation. Journal of Elasticity 142 (2020), pp. 201–262.
5.) P. Lewintan: On \alpha-minimizing hypercones. Rendiconti del Seminario Matematico della Università di Padova 143 (2020), pp. 227–246.
4.) S. Eberle, P. Lewintan: Ein Vorschlag zur konsistenten Einführung der Ableitung mit der Zoom-in-Methode. Mathematische Semesterberichte 66 (2019), no. 2, pp. 203–217.
3.) P. Lewintan: Geometric Calculus of the Gauss Map. Advances in Applied Clifford Algebras 27 (2017), no. 1, pp. 503–521.
2.) P. Lewintan: On Bernstein-type theorems. In: J. van der Veken et al. (eds.), Pure and Applied Differential Geometry - PADGE 2012, In memory of Franki Dillen. Shaker Verlag, 2013, pp. 168–174.
1.) P. Lewintan: The “Wrong Minimal Surface Equation” does not have the Bernstein property. Analysis 31 (2011), no. 4, pp. 299–303.

Lehrbuch

A. Lewintan, P. Lewintan: Einführung in die Differential- und in die Differenzengleichungen. Logos Verlag Berlin, 2022.