How to construct Breather Solutions using Nonlinear Helmholtz Systems

Dominic Scheider
Outline

1 Breather solutions

2 Breather solutions for the cubic Klein-Gordon Equation

\[\partial_t^2 U - \Delta U + m^2 U = U^3 \text{ on } \mathbb{R} \times \mathbb{R}^3 \]

3 Breather solutions for the nonlinear Wave Equation

\[\partial_t^2 U - \Delta U = |U|^{p-2} U \text{ on } \mathbb{R} \times \mathbb{R}^N \]
Breather solutions

The Sine-Gordon Breather

\[\frac{\partial^2}{\partial t^2} U - \frac{\partial^2}{\partial x^2} U + \sin(U) = 0 \quad \text{on} \quad \mathbb{R} \times \mathbb{R} \]

▷ Ablowitz et al. 1973:

\[U(t, x) = 4 \arctan \left(\frac{\sqrt{1 - \omega^2}}{\omega} \frac{\cos(\omega(t - t_0))}{\cosh(\sqrt{1 - \omega^2}(x - x_0))} \right). \]

Breather solutions

The Sine-Gordon Breather

\[\partial_t^2 U - \partial_x^2 U + \sin(U) = 0 \quad \text{on} \quad \mathbb{R} \times \mathbb{R} \]

▷ Ablowitz et al. 1973:

\[U(t, x) = 4 \arctan \left(\frac{\sqrt{1 - \omega^2}}{\omega} \frac{\cos(\omega(t - t_0))}{\cosh(\sqrt{1 - \omega^2}(x - x_0))} \right). \]

“breathing takes place only for isolated nonlinearities”
Breathers in periodic structures (1/3)

\[V(x) \partial_t^2 U - \partial_x^2 U + q(x) U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R} \]
Breather solutions

Breathers in periodic structures (1/3)

\[V(x) \partial_t^2 U - \partial_x^2 U + q(x) U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R} \]

▷ Blank, Chirilus-Bruckner, Lescarret, Schneider 2011:
Breather solutions

Breathers in periodic structures (1/3)

\[V(x) \partial_t^2 U - \partial_x^2 U + q(x) U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R} \]

▷ Blank, Chirilus-Bruckner, Lescarret, Schneider 2011:

Assumptions:
\[V(x), q(x) = (q_0 - \varepsilon^2) V(x) \] explicit periodic step potentials.

Methods:
Spatial dynamics, center manifold reduction, bifurcation.

Result: For \(0 < \varepsilon < \varepsilon_0 \) existence of a solution \(U(t, x) \) with
▷ explicit period in \(t \), ▷ exponential decay in \(x \).
Breather solutions

Breathers in periodic structures (1/3)

\[V(x) \partial_t^2 U - \partial_x^2 U + q(x) U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R} \]

▷ Blank, Chirilus-Bruckner, Lescarret, Schneider 2011:

Assumptions:
\[V(x), q(x) = (q_0 - \varepsilon^2) V(x) \] explicit periodic step potentials.

Methods:
Spatial dynamics, center manifold reduction, bifurcation.

Result: For \(0 < \varepsilon < \varepsilon_0 \) existence of a solution \(U(t, x) \) with
- explicit period in \(t \),
- exponential decay in \(x \).

Breather solutions

Breathers in periodic structures (2/3)

\[V(x) \partial_t^2 U - \partial_x^2 U + q(x) U = \Gamma(x)|U|^{p-2}U \quad \text{on} \quad \mathbb{R} \times \mathbb{R} \]

▷ Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

▷ Hirsch, Reichel 2019:
Breather solutions

Breathers in periodic structures (2/3)

\[V(x) \partial_t^2 U - \partial_x^2 U + q(x) U = \Gamma(x)|U|^{p-2} U \quad \text{on} \quad \mathbb{R} \times \mathbb{R} \]

▷ Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

▷ Hirsch, Reichel 2019:

Assumptions:
\[V(x) \sim q(x) \text{ specific periodic delta / step / } H^r \text{ potentials; } \]
\[2 < p < p^*(V). \]

Methods:
Variational approach (Nehari manifold).

Result:
Existence of (possibly large) time-periodic ground state solutions.
Breather solutions

Breathers in periodic structures (3/3)

\[V(x) \frac{\partial^2}{\partial t^2} U - \frac{\partial^2}{\partial x^2} U + m^2 V(x) U = f(x, U) \quad \text{on} \quad \mathbb{R} \times \mathbb{R} \]

▷ Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.
Breather solutions

Breathers in periodic structures (3/3)

\[V(x) \partial_t^2 U - \partial_x^2 U + m^2 V(x) U = f(x, U) \text{ on } \mathbb{R} \times \mathbb{R} \]

▷ Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

Guiding principles:

\[U(t, x) = \sum_k e^{ik\omega t} u_k(x) \quad \leadsto \quad -u''_k + (m^2 - k^2 \omega^2) V(x) u_k = f_k(x, U). \]

Aim for \(0 \notin \sigma\left(-\frac{d^2}{dx^2} + (m^2 - k^2 \omega^2) V(x)\right)\). Problem: \(|k| \to \infty \ldots\)
Breather solutions

Breathers in periodic structures (3/3)

\[V(x) \partial_t^2 U - \partial_x^2 U + m^2 V(x) U = f(x, U) \quad \text{on} \quad \mathbb{R} \times \mathbb{R} \]

▷ Blank, Chirilus-Bruckner, Lescarret, Schneider 2011.

Guiding principles:

\[U(t, x) = \sum_k e^{ik\omega t} u_k(x) \quad \leadsto \quad -u_k'' + (m^2 - k^2 \omega^2) V(x) u_k = f_k(x, U). \]

Aim for \(0 \not\in \sigma\left(-\frac{d^2}{dx^2} + (m^2 - k^2 \omega^2) V(x)\right)\). Problem: \(|k| \to \infty \ldots\)

Periodicity & roughness of \(V(x)\) yield uniformly open spectral gaps.
\(\leadsto\) “breathing takes place only for carefully designed potentials”
Breather solutions

Why not allow 0 in the spectra?
Breather solutions

Why not allow 0 in the spectra?

Then $V(x) \equiv 1$ is fine. Klein-Gordon equation:

$$\partial_t^2 U - \Delta U + m^2 U = f(x, U) \text{ on } \mathbb{R} \times \mathbb{R}^N$$
Breather solutions

Why not allow 0 in the spectra?

Then $V(x) \equiv 1$ is fine. Klein-Gordon equation:

$$\partial_t^2 U - \Delta U + m^2 U = f(x, U) \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^N$$

Cost: $N = 1$ not accessible, $V(x) \not\equiv \text{const.}$ hard, breathers decay slowly.

Gain: $N > 1$ accessible, $V(x) \equiv \text{const.}$ accessible, many breathers.
Breather solutions

Why not allow 0 in the spectra?

Then $V(x) \equiv 1$ is fine. Klein-Gordon equation:

$$\partial_t^2 U - \Delta U + m^2 U = f(x, U) \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^N$$

Cost: $N = 1$ not accessible, $V(x) \not\equiv \text{const.}$ hard, breathers decay slowly.

Gain: $N > 1$ accessible, $V(x) \equiv \text{const.}$ accessible, many breathers.

Here, breathing is not a rare phenomenon.
Outline

1 Breather solutions

2 Breather solutions for the cubic Klein-Gordon Equation

\[\partial_t^2 U - \Delta U + m^2 U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^3 \]

3 Breather solutions for the nonlinear Wave Equation

\[\partial_t^2 U - \Delta U = |U|^{p-2} U \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^N \]
Breathers for the Klein-Gordon Equation

\[\partial_t^2 U - \Delta U + m^2 U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^3 \]
Breathers for the Klein-Gordon Equation

\[\partial_t^2 U - \Delta U + m^2 U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^3 \]

(i) \(U(t, x) = \sum_k e^{ik\omega t} u_k(x) \) yields

\[-\Delta u_k - (k^2 \omega^2 - m^2) u_k = \sum_{l+m+n=k} u_l u_m u_n \quad \text{on} \quad \mathbb{R}^3. \]
Breathers for the Klein-Gordon Equation

\[\partial_t^2 U - \Delta U + m^2 U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^3 \]

(i) \[U(t, x) = \sum_k e^{ik\omega t} u_k(x) \] yields

\[-\Delta u_k - (k^2 \omega^2 - m^2) u_k = \sum_{l+m+n=k} u_l u_m u_n \quad \text{on} \quad \mathbb{R}^3. \]

Nonlinear Helmholtz System: \[0 \in \sigma(-\Delta - (k^2 \omega^2 - m^2)) \text{ for } k \neq 0 \]
Breathers for the Klein-Gordon Equation

\[\partial_t^2 U - \Delta U + m^2 U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^3 \]

(i) \(U(t, x) = \sum_k e^{ik\omega t} u_k(x) \) yields

\[-\Delta u_k - (k^2 \omega^2 - m^2) u_k = \sum_{l+m+n=k} u_l u_m u_n \quad \text{on} \quad \mathbb{R}^3. \]

Nonlinear Helmholtz System: \(0 \in \sigma(-\Delta - (k^2 \omega^2 - m^2)) \) for \(k \neq 0 \)

(ii) Study bifurcation from any stationary \(U^0(t, x) = w_0(x) \).
Breathers for the Klein-Gordon Equation

\[\partial_t^2 U - \Delta U + m^2 U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^3 \]

(i) \(U(t, x) = \sum_k e^{i k \omega t} u_k(x) \) yields

\[-\Delta u_k - (k^2 \omega^2 - m^2) u_k = \sum_{l+m+n=k} u_l u_m u_n \quad \text{on} \quad \mathbb{R}^3. \]

Nonlinear Helmholtz System: \(0 \in \sigma \left(-\Delta - (k^2 \omega^2 - m^2)\right) \) for \(k \neq 0 \)

(ii) Study bifurcation from any stationary \(U^0(t, x) = w_0(x) \).

\(\leadsto \) Family of breathers \(U^\eta(t, x) = \sum_k e^{i k \omega t} u^\eta_k(x) \).
Breathers for the Klein-Gordon Equation

\[\partial_t^2 U - \Delta U + m^2 U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^3 \]

(i) \(U(t, x) = \sum_k e^{ik\omega t} u_k(x) \) yields

\[-\Delta u_k - (k^2 \omega^2 - m^2) u_k = \sum_{l+m+n=k} u_l u_m u_n \quad \text{on} \quad \mathbb{R}^3. \]

Nonlinear Helmholtz System: \(0 \in \sigma(-\Delta - (k^2 \omega^2 - m^2)) \) for \(k \neq 0 \)

(ii) Study bifurcation from any stationary \(U^0(t, x) = w_0(x) \).

\[\leadsto \text{Family of breathers} \quad U^\eta(t, x) = \sum_k e^{ik\omega t} u_k^\eta(x). \]

Bifurcation from simple eigenvalues:

Need 1-dim. kernel of linearization

\[-\Delta v_k - (k^2 \omega^2 - m^2) v_k = 3w_0^2 v_k \quad \text{on} \quad \mathbb{R}^3. \]
Breathers for the Klein-Gordon Equation

\[
\frac{\partial^2 U}{\partial t^2} - \Delta U + m^2 U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^3
\]

(i) \(U(t, x) = \sum_k e^{ik\omega t} u_k(x) \) yields

\[-\Delta u_k - (k^2 \omega^2 - m^2) u_k = \sum_{l+m+n=k} u_l u_m u_n \quad \text{on} \quad \mathbb{R}^3.\]

Nonlinear Helmholtz System: \(0 \in \sigma(-\Delta - (k^2 \omega^2 - m^2)) \) for \(k \neq 0 \)

(ii) Study bifurcation from any stationary \(U^0(t, x) = w_0(x) \).

\(\leadsto \) Family of breathers \(U^\eta(t, x) = \sum_k e^{ik\omega t} u^\eta_k(x) \).

Bifurcation from simple eigenvalues:

Need 1-dim. kernel of linearization

\[-\Delta v_k - (k^2 \omega^2 - m^2) v_k = 3w_0^2 v_k \quad \text{on} \quad \mathbb{R}^3.\]

Key ideas: Radial symmetry, asymptotic phase condition.
Let $X := \{ u \in C^{rad}(\mathbb{R}^3, \mathbb{R}) | \sup (1+|x|) |u(x)| < \infty \}$. Let $w_0 \in X$ with $-\Delta w_0 + m^2 w_0 = w_0^3$ on \mathbb{R}^3; choose $\omega > m$ and $s \in \mathbb{N}$.

Theorem 1 [S. 2019]

There exist an interval $I \subseteq \mathbb{R}$, $0 \in I$ and a family $(U_{\eta})_{\eta \in I \subseteq C^2_{per}(\mathbb{R}, X)}$ of real-valued, classical breather solutions $U_{\eta}(t, x) = \sum_k e^{ik\omega t} u_{\eta k}(x)$ of the Klein-Gordon equation $\partial^2_t U - \Delta U + m^2 U = U^3$ on $\mathbb{R} \times \mathbb{R}^3$ which is a continuous curve in $C(\mathbb{R}, X)$ with $\Delta U_0(t, x) = w_0(x)$, ΔU_{η} is $2\pi \omega$-periodic in time with ∞ many nonzero modes ($\eta \neq 0$), $\Delta d_{\eta | \eta = 0} u_{\eta k} \neq 0$ iff $k = s$ (excitation of s-th mode).
Let $X := \{ u \in C_{rad}(\mathbb{R}^3, \mathbb{R}) | \sup (1 + |x|) |u(x)| < \infty \}$.
Breathers for the Klein-Gordon Equation

Let \(X := \{ u \in C_{rad}(\mathbb{R}^3, \mathbb{R}) \mid \sup(1 + |x|)|u(x)| < \infty \} \).

Let \(w_0 \in X \) with \(-\Delta w_0 + m^2 w_0 = w_0^3\) on \(\mathbb{R}^3 \); choose \(\omega > m \) and \(s \in \mathbb{N} \).
Breathers for the Klein-Gordon Equation

Let $X := \{ u \in C_{rad}(\mathbb{R}^3, \mathbb{R}) \mid \sup(1 + |x|) |u(x)| < \infty \}$.

Let $w_0 \in X$ with $-\Delta w_0 + m^2 w_0 = w_0^3$ on \mathbb{R}^3; choose $\omega > m$ and $s \in \mathbb{N}$.

Theorem 1 [S. 2019]
There exist an interval $I \subseteq \mathbb{R}$, $0 \in I$ and a family $(U_{\eta})_{\eta \in I} \subseteq C^2_{\text{per}}(\mathbb{R}, X)$ of real-valued, classical breather solutions $U_{\eta}(t, x) = \sum_k e^{ik\omega t} u_{k \eta}(x)$ of the Klein-Gordon equation

$$\partial_t^2 U - \Delta U + m^2 U = U^3 \quad \text{on } \mathbb{R} \times \mathbb{R}^3$$
Breathers for the Klein-Gordon Equation

Let $X := \{ u \in C_{\operatorname{rad}}(\mathbb{R}^3, \mathbb{R}) \mid \sup(1 + |x|)|u(x)| < \infty \}$.

Let $w_0 \in X$ with $-\Delta w_0 + m^2 w_0 = w_0^3$ on \mathbb{R}^3; choose $\omega > m$ and $s \in \mathbb{N}$.

Theorem 1 [S. 2019]

There exist an interval $I \subseteq \mathbb{R}$, $0 \in I$ and a family $(U_\eta)_{\eta \in I} \subseteq C^2_{\operatorname{per}}(\mathbb{R}, X)$ of real-valued, classical breather solutions $U_\eta(t, x) = \sum_k e^{ik\omega t} u_k^\eta(x)$ of the Klein-Gordon equation

$$\partial_t^2 U - \Delta U + m^2 U = U^3 \quad \text{on } \mathbb{R} \times \mathbb{R}^3$$

which is a continuous curve in $C(\mathbb{R}, X)$ with

- $U^0(t, x) = w_0(x)$,
- U_η is $\frac{2\pi}{\omega}$-periodic in time with ∞ many nonzero modes ($\eta \neq 0$),
- $\left.\frac{d}{d\eta}\right|_{\eta=0} u_k^\eta \neq 0 \text{ iff } k = s$ (excitation of s-th mode).
Breathers for the Klein-Gordon Equation

Remarks

\[\partial^2_t U - \Delta U + m^2 U = \Gamma(x) U^3 \text{ on } \mathbb{R} \times \mathbb{R}^3 \] with Γ bounded, radial, continuously differentiable.

Open: Other space dimensions / powers (easy?); non-constant potentials (hard!).

Aspects of the Proof

- Bifurcation from simple eigenvalues (in a nutshell),
- Linear Helmholtz equations in X (likewise),
- How to prove the Theorem.
Remarks

▷ Extension to

\[\partial_t^2 U - \Delta U + m^2 U = \Gamma(x) U^3 \quad \text{on } \mathbb{R} \times \mathbb{R}^3 \]

with \(\Gamma \) bounded, radial, continuously differentiable.

▷ Open: Other space dimensions / powers (easy?); non-constant potentials (hard!).
Breathers for the Klein-Gordon Equation

Remarks

▷ Extension to

\[\partial_t^2 U - \Delta U + m^2 U = \Gamma(x) U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^3 \]

with \(\Gamma \) bounded, radial, continuously differentiable.

▷ Open: Other space dimensions / powers (easy?); non-constant potentials (hard!).

Aspects of the Proof
Remarks

▷ Extension to

\[\partial_t^2 U - \Delta U + m^2 U = \Gamma(x) U^3 \text{ on } \mathbb{R} \times \mathbb{R}^3 \]

with \(\Gamma \) bounded, radial, continuously differentiable.

▷ Open: Other space dimensions / powers (easy?); non-constant potentials (hard!).

Aspects of the Proof

▷ Bifurcation from simple eigenvalues (in a nutshell),
▷ Linear Helmholtz equations in \(X \) (likewise),
▷ How to prove the Theorem.
Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.
Breathers for the Klein-Gordon Equation

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

Situation: Banach space E, $u_0 \in E$ and $f \in C^1(E \times \mathbb{R}, E)$ with
\[f(u_0, \lambda) = 0 \quad \text{for all } \lambda \in \mathbb{R}. \]
Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

Situation: Banach space E, $u_0 \in E$ and $f \in C^1(E \times \mathbb{R}, E)$ with
\[f(u_0, \lambda) = 0 \quad \text{for all } \lambda \in \mathbb{R}. \]

Question: Solutions of $f(u, \lambda) = 0$ with $(u, \lambda) \approx (u_0, \lambda_0)$ but $u \neq u_0$?
Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

Situation: Banach space E, $u_0 \in E$ and $f \in C^1(E \times \mathbb{R}, E)$ with

$$f(u_0, \lambda) = 0 \text{ for all } \lambda \in \mathbb{R}. $$

Question: Solutions of $f(u, \lambda) = 0$ with $(u, \lambda) \approx (u_0, \lambda_0)$ but $u \neq u_0$?

$$\dim \ker D_u f(u_0, \lambda_0) = 0$$

Implicit Function Theorem
Breathers for the Klein-Gordon Equation

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

Situation: Banach space \(E \), \(u_0 \in E \) and \(f \in C^1(E \times \mathbb{R}, E) \) with

\[
f(u_0, \lambda) = 0 \quad \text{for all } \lambda \in \mathbb{R}.
\]

Question: Solutions of \(f(u, \lambda) = 0 \) with \((u, \lambda) \approx (u_0, \lambda_0) \) but \(u \neq u_0 \)?

\[
\dim \ker D_u f(u_0, \lambda_0) = 0
\]

Implicit Function Theorem
Breathers for the Klein-Gordon Equation

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

Situation: Banach space E, $u_0 \in E$ and $f \in C^1(E \times \mathbb{R}, E)$ with

$$f(u_0, \lambda) = 0 \quad \text{for all} \quad \lambda \in \mathbb{R}.$$

Question: Solutions of $f(u, \lambda) = 0$ with $(u, \lambda) \approx (u_0, \lambda_0)$ but $u \neq u_0$?
Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

Situation: Banach space E, $u_0 \in E$ and $f \in C^1(E \times \mathbb{R}, E)$ with

$$f(u_0, \lambda) = 0 \quad \text{for all } \lambda \in \mathbb{R}.$$

Question: Solutions of $f(u, \lambda) = 0$ with $(u, \lambda) \approx (u_0, \lambda_0)$ but $u \neq u_0$?

$$\dim \ker D_u f(u_0, \lambda_0) = 1$$

(and more)

Crandall-Rabinowitz Theorem:

Bifurcation

from a simple eigenvalue
Breathers for the Klein-Gordon Equation

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

Situation: Banach space E, $u_0 \in E$ and $f \in C^1(E \times \mathbb{R}, E)$ with

$$f(u_0, \lambda) = 0 \quad \text{for all } \lambda \in \mathbb{R}.$$

Question: Solutions of $f(u, \lambda) = 0$ with $(u, \lambda) \approx (u_0, \lambda_0)$ but $u \neq u_0$?

\[\dim \ker D_u f(u_0, \lambda_0) = 1\]

(and more)

Crandall-Rabinowitz Theorem:
Bifurcation
from a simple eigenvalue

\[T = \{(u_0, \lambda) \mid \lambda \in \mathbb{R}\}\]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.
Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

\[\partial_t^2 U - \Delta U + m^2 U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^3 \]

yields via \(U(t, x) = \sum_k e^{ik\omega t} u_k(x) \) the infinite system

\[-\Delta u_k - (k^2 \omega^2 - m^2) u_k = \sum_{l+m+n=k} u_l u_m u_n \quad \text{on} \quad \mathbb{R}^3. \]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 1/3: Bifurcation from simple eigenvalues.

\[\partial_t^2 U - \Delta U + m^2 U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^3 \]

yields via \(U(t, x) = \sum_k e^{ik\omega t} u_k(x) \) the infinite system

\[-\Delta u_k - (k^2 \omega^2 - m^2) u_k = \sum_{l+m+n=k} u_l u_m u_n \quad \text{on} \quad \mathbb{R}^3. \]

▷ Reformulate as \(f((u_k)_k, \lambda) = 0. \)
▷ Introduce a bifurcation parameter \(\lambda. \)
▷ Ensure 1-dim. kernel of linearized problem

\[-\Delta v_k - (k^2 \omega^2 - m^2) v_k = 3w_0^2(x) v_k \quad \text{on} \quad \mathbb{R}^3. \]

▷ Verify remaining conditions of the CR Bifurcation Theorem (transversality).
Breathers for the Klein-Gordon Equation

Aspects of the Proof 2/3: Linear Helmholtz equations.
Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = f \quad \text{on } \mathbb{R}^3, \quad \mu > 0\] \hspace{1cm} (H)

▷ “Helmholtz” case: \(0 \in \sigma(-\Delta - \mu)\)

\[
\begin{aligned}
-\Delta u - \mu u &= f \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \\
\sigma(-\Delta - \mu) &= \{0\}
\end{aligned}
\]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = f \text{ on } \mathbb{R}^3, \quad \mu > 0\] (H)

▷ “Helmholtz” case: $0 \in \sigma(-\Delta - \mu)$
▷ Particular solution of (H):

Limiting Absorption Principle,

\[
u_1 = \Re \left[\lim_{\varepsilon \to 0} (-\Delta - \mu - i\varepsilon)^{-1} f \right] = \frac{\cos(|\cdot| \sqrt{\mu})}{4\pi|\cdot|} \ast f.
\]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = f \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \quad \text{(H)}\]

- “Helmholtz” case: \(0 \in \sigma(-\Delta - \mu)\)
- Particular solution of (H):
 Limiting Absorption Principle,

\[
u_1 = \Re \left[\lim_{\varepsilon \to 0} (-\Delta - \mu - i\varepsilon)^{-1} f \right] = \frac{\cos(|\cdot|\sqrt{\mu})}{4\pi|\cdot|} * f.
\]

- General solution of (H): \(u = u_1 + u_2\)
 with any Herglotz wave \(-\Delta u_2 - \mu u_2 = 0\), e.g. \(u_2 = \frac{\sin(|\cdot|\sqrt{\mu})}{4\pi|\cdot|} * f\).
Breathers for the Klein-Gordon Equation

Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = f \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \quad \text{(H)}\]

- “Helmholtz” case: $0 \in \sigma(-\Delta - \mu)$
- Particular solution of (H):
 Limiting Absorption Principle,

 \[
 u_1 = \Re \left[\lim_{\varepsilon \to 0} (-\Delta - \mu - i\varepsilon)^{-1} f \right] = \frac{\cos(|\cdot| \sqrt{\mu})}{4\pi|\cdot|} \ast f.
 \]

- General solution of (H): $u = u_1 + u_2$

 with any Herglotz wave $-\Delta u_2 - \mu u_2 = 0$, e.g. $u_2 = \frac{\sin(|\cdot| \sqrt{\mu})}{4\pi|\cdot|} \ast f$.

Summary: Multitude of (weakly) localized solutions.
Breathers for the Klein-Gordon Equation

Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = f(r) \text{ on } \mathbb{R}^3, \quad \mu > 0 \quad (H)\]

\[\triangleright \text{“Helmholtz” case: } 0 \in \sigma(-\Delta - \mu)\]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = f(r) \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \quad \tag{H}\]

▷ "Helmholtz" case: $0 \in \sigma(-\Delta - \mu)$

▷ Particular solution of (H):

\[-(ru_1)'' - \mu (ru_1) = rf(r), \quad u_1(0) = 1, \quad u_1'(0) = 0.\]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = f(r) \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \quad (H)\]

- "Helmholtz" case: \(0 \in \sigma(-\Delta - \mu)\)
- Particular solution of (H):
 \[-(ru_1)'' - \mu (ru_1) = rf(r), \quad u_1(0) = 1, \quad u_1'(0) = 0.\]

- General solution of (H):
 \[u = u_1 + c \cdot \frac{\sin(| \cdot | \sqrt{\mu})}{4\pi | \cdot |} \quad \text{often} \quad \cos\left(\frac{| \cdot | \sqrt{\mu}}{4\pi | \cdot |}\right) \ast f + \tilde{c} \cdot \frac{\sin(| \cdot | \sqrt{\mu})}{4\pi | \cdot |} \ast f, \quad c, \tilde{c} \in \mathbb{R}.\]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = f(r) \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \]

\(\triangleright \) “Helmholtz” case: \(0 \in \sigma(-\Delta - \mu) \)

\(\triangleright \) Particular solution of (H):

\[-(ru_1)'' - \mu(ru_1) = rf(r), \quad u_1(0) = 1, \quad u_1'(0) = 0. \]

\(\triangleright \) General solution of (H):

\[u = u_1 + c \cdot \frac{\sin(|\cdot|\sqrt{\mu})}{4\pi|\cdot|} \]

\[\text{often} \quad \cos(|\cdot|\sqrt{\mu}) \frac{1}{4\pi|\cdot|} \ast f + \tilde{c} \cdot \frac{\sin(|\cdot|\sqrt{\mu})}{4\pi|\cdot|} \ast f, \quad c, \tilde{c} \in \mathbb{R}. \]

Radial symmetry \(\leadsto \) 1-dim. solution spaces.
Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = g(r) \cdot u \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \quad (H^*)\]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = g(r) \cdot u \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \quad (H^*)\]

▷ Asymptotically, if g is localized:

\[-(ru)'' - \mu (ru) \approx 0 \quad \implies u(r) \approx q_\infty \frac{\sin(r\sqrt{\mu} + \tau_\infty)}{r}\]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = g(r) \cdot u \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \quad \text{(H\(^*\))}\]

- Asymptotically, if \(g \) is localized:

\[-(ru)'' - \mu (ru) \approx 0 \quad \implies \quad u(r) \approx \varrho_\infty \frac{\sin(r \sqrt{\mu} + \tau_\infty)}{r}\]

- Lemma:

(H\(^*\)) has a unique normalized solution in \(X \). It satisfies

\[u(r) = \frac{\sin(r \sqrt{\mu} + \tau_\infty)}{r} + O \left(\frac{1}{r^2} \right)\]

for some unique \(\tau_\infty \in [0, \pi) \).
Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = g(r) \cdot u \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \quad (H^*)\]

▷ Asymptotically, if \(g \) is localized:

\[-(ru)'' - \mu (ru) \approx 0 \quad \rightsquigarrow \quad u(r) \approx \varrho_\infty \frac{\sin (r \sqrt{\mu} + \tau_\infty)}{r} \]

▷ Lemma:

\((H^*)\) together with an asymptotic phase condition (far field condition)

\[u(r) \sim \frac{\sin (r \sqrt{\mu} + \tau)}{r} + O \left(\frac{1}{r^2} \right) \quad (A_\tau)\]

has a nontrivial solution in \(X \) iff \(\tau = \tau_\infty \). (Unique up to constant multiple.)
Aspects of the Proof 2/3: Linear Helmholtz equations.

\[
\Delta u - \mu u = g(r) \cdot u \quad \text{on} \quad \mathbb{R}^3, \quad \mu > 0 \quad (H^* u(r) \sim \sin(r \sqrt{\mu} + \tau r) + O(\frac{1}{r^2})),
\]

Lemma:

\((H^*) \) together with the asymptotic phase condition \((A \tau) \) has a nontrivial solution in \(X \) iff \(\tau = \tau_\infty \). (Unique up to constant multiple.)

Remark:

For \(\tau \neq 0 \) and \(u \in X \),

\[(H^*), (A \tau) \iff u = \sin(|\cdot| \sqrt{\mu} + \tau_{\infty} |\cdot| \sin(\tau)) \ast [g u] =: \Psi_{\tau \mu} \ast [g u]. \]

Radial symmetry \(\oplus \) “good” phase cond. \(\Rightarrow \) 1-dim. solution spaces.

Radial symmetry \(\oplus \) “bad” phase cond. \(\Rightarrow \) 0-dim. solution spaces.
Aspects of the Proof 2/3: Linear Helmholtz equations.

\[- \Delta u - \mu u = g(r) \cdot u \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \quad \text{ (H*)}\]

\[u(r) \sim \frac{\sin(r \sqrt{\mu + \tau})}{r} + O \left(\frac{1}{r^2} \right) \quad \text{ (A}_\tau \text{)}\]

Lemma:

(H*) together with the asymptotic phase condition (A_\tau) has a nontrivial solution in X iff \(\tau = \tau_\infty\). (Unique up to constant multiple.)
Aspects of the Proof 2/3: Linear Helmholtz equations.

\[- \Delta u - \mu u = g(r) \cdot u \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \quad (H^*)
\]
\[u(r) \sim \frac{\sin(r \sqrt{\mu} + \tau)}{r} + O \left(\frac{1}{r^2} \right) \quad (A_\tau)\]

\[\updownarrow \text{Lemma:} \quad \updownarrow\]

(H*) together with the asymptotic phase condition (A_\tau) has a nontrivial solution in X iff \(\tau = \tau_\infty\). (Unique up to constant multiple.)

\[\updownarrow \text{Remark: For } \tau \neq 0 \text{ and } u \in X, \updownarrow\]

\[(H^*), (A_\tau) \quad \Leftrightarrow \quad u = \frac{\sin(|\cdot| \sqrt{\mu} + \tau)}{4\pi|\cdot| \sin(\tau)} * [g u] =: \Psi^\tau_{\mu} * [g u].\]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 2/3: Linear Helmholtz equations.

\[-\Delta u - \mu u = g(r) \cdot u \quad \text{on } \mathbb{R}^3, \quad \mu > 0 \quad \text{(H*)}\]

\[u(r) \sim \frac{\sin(r \sqrt{\mu} + \tau)}{r} + O\left(\frac{1}{r^2}\right) \quad \text{(A}_\tau\text{)}\]

▷ Lemma:

(H*) together with the asymptotic phase condition (A_τ) has a nontrivial solution in X iff \(\tau = \tau_\infty\). (Unique up to constant multiple.)

▷ Remark: For \(\tau \neq 0\) and \(u \in X\),

\[(H^*), (A_\tau) \iff u = \frac{\sin(|\cdot| \sqrt{\mu} + \tau)}{4\pi|\cdot| \sin(\tau)} * [g \ u] =: \Psi_{\tau \mu} * [g \ u].\]

Radial symmetry \(\oplus\) “good” phase cond. \(\leadsto\) 1-dim. solution spaces.

Radial symmetry \(\oplus\) “bad” phase cond. \(\leadsto\) 0-dim. solution spaces.
Aspects of the Proof 3/3.

Breathers for the Klein-Gordon Equation

\[\partial^2_t U - \Delta U + m^2 U = U^3 \text{ on } \mathbb{R} \times \mathbb{R}^3 \]
yields via

\[U(t, x) = \sum_{k} e^{i k \omega t} u_k(x) \]
the infinite system

\[-\Delta u_k - (k^2 \omega^2 - m^2) u_k = \sum_{l+m+n=k} u_l u_m u_n \text{ on } \mathbb{R}^3 \]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 3/3.

\[\partial_t^2 U - \Delta U + m^2 U = U^3 \quad \text{on} \quad \mathbb{R} \times \mathbb{R}^3 \]

yields via \(U(t, x) = \sum_k e^{ik\omega t} u_k(x) \) the infinite system

\[-\Delta u_k - (k^2 \omega^2 - m^2) u_k = \sum_{l+m+n=k} u_l u_m u_n \quad \text{on} \quad \mathbb{R}^3. \]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 3/3.

\[-\Delta u_k - (k^2 \omega^2 - m^2) u_k = \sum_{l+m+n=k} u_l u_m u_n \quad \text{on} \quad \mathbb{R}^3\]
Breathers for the Klein-Gordon Equation

Aspects of the Proof 3/3.

\[-\Delta u_k - (k^2 \omega^2 - m^2) u_k = (u \ast u \ast u)_k \quad \text{on} \quad \mathbb{R}^3\]

where \(u = (u_k)_k \in \ell^1(\mathbb{Z}, X) \).
Breathers for the Klein-Gordon Equation

Aspects of the Proof 3/3.

\[-\Delta u_k - \mu_k u_k = (u \ast u \ast u)_k \text{ on } \mathbb{R}^3\]

where \(u = (u_k)_k \in \ell^1(\mathbb{Z}, X)\) and \(\mu_k = k^2 \omega^2 - m^2\).
Breathers for the Klein-Gordon Equation

Aspects of the Proof 3/3.

\[-\Delta u_k - \mu_k u_k = (u * u * u)_k \quad \text{on} \quad \mathbb{R}^3 \]

where \(u = (u_k)_k \in \ell^1(\mathbb{Z}, X) \) and \(\mu_k = k^2 \omega^2 - m^2 \).

▷ Reformulate as \(f(u, \lambda) = 0 \).
▷ Introduce a bifurcation parameter \(\lambda \).
▷ Ensure 1-dim. kernel of linearized problem

\[-\Delta v_k - \mu_k v_k = 3w^2_0(x) v_k \quad \text{on} \quad \mathbb{R}^3. \]

▷ Verify remaining conditions of the CR Bifurcation Theorem (transversality).
Breathers for the Klein-Gordon Equation

Aspects of the Proof 3/3.

\[u_k - \Psi_{\mu_k}^{\tau_k} \ast [(u \ast u \ast u)_k] = 0 \quad (k \neq 0 !) \]

where \(u = (u_k)_k \in \ell^1(\mathbb{Z}, X) \) and \(\mu_k = k^2 \omega^2 - m^2 \)

with asymptotic conditions given by \(\tau_k \).

▷ ✓ Reformulate as \(f(u, \lambda) = 0 \).
▷ Introduce a bifurcation parameter \(\lambda \).
▷ Ensure 1-dim. kernel of linearized problem

\[v_k - 3 \Psi_{\mu_k}^{\tau_k} \ast [w_0^2 v_k] = 0 \quad (k \neq 0 !). \]

▷ Verify remaining conditions of the CR Bifurcation Theorem (transversality).
Breathers for the Klein-Gordon Equation

Aspects of the Proof 3/3.

\[u_k - \Psi^{\tau_k}_{\mu_k} \ast [(u \ast u \ast u)_k] = 0 \quad (k \neq 0 !) \]

where \(u = (u_k)_k \in \ell^1(\mathbb{Z}, X) \) and \(\mu_k = k^2 \omega^2 - m^2 \)
with asymptotic conditions given by \(\tau_k \).

▷ √ Reformulate as \(f(u, \lambda) = 0 \).
▷ √ Replace \(\tau_s \) by \(\tau_s + \lambda \): “Invisible” bifurcation parameter.
▷ Ensure 1-dim. kernel of linearized problem

\[v_k - 3 \Psi^{\tau_k}_{\mu_k} \ast [w_0^2 v_k] = 0 \quad (k \neq 0 !). \]

▷ Verify remaining conditions of the CR Bifurcation Theorem (transversality).
Breathers for the Klein-Gordon Equation

Aspects of the Proof 3/3.

\[u_k - \Psi^{\tau_k}_{\mu_k} [(u \ast u \ast u)_k] = 0 \quad (k \neq 0 !) \]

where \(u = (u_k)_k \in \ell^1(\mathbb{Z}, X) \) and \(\mu_k = k^2 \omega^2 - m^2 \)

with asymptotic conditions given by \(\tau_k \).

▷ ✓ Reformulate as \(f(u, \lambda) = 0 \).

▷ ✓ Replace \(\tau_s \) by \(\tau_s + \lambda \): “Invisible” bifurcation parameter.

▷ ✓ Recall Lemma: Choose \(\tau_s \) “good” and all other \(\tau_k \) “bad” s.t.

\[v_k - 3\Psi^{\tau_k}_{\mu_k} [w_0^2 v_k] = 0 \Rightarrow v_k \equiv 0 \quad \text{holds iff } k \neq s. \]

For \(k = 0 \), this is a result in the literature.

▷ Verify remaining conditions of the CR Bifurcation Theorem (transversality).
Aspects of the Proof 3/3.

\[u_k - \Psi_{\mu_k}^\tau \ast [(u \ast u \ast u)_k] = 0 \quad (k \neq 0 !) \]

where \(u = (u_k)_k \in \ell^1(\mathbb{Z}, X) \) and \(\mu_k = k^2 \omega^2 - m^2 \)

with asymptotic conditions given by \(\tau_k \).

\(\diamond \) ✓ Reformulate as \(f(u, \lambda) = 0. \)

\(\diamond \) ✓ Replace \(\tau_s \) by \(\tau_s + \lambda \): “Invisible” bifurcation parameter.

\(\diamond \) ✓ Recall Lemma: Choose \(\tau_s \) “good” and all other \(\tau_k \) “bad” s.t.

\[\nu_k - 3 \Psi_{\mu_k}^\tau \ast [w_0^2 \nu_k] = 0 \Rightarrow \nu_k \equiv 0 \quad \text{holds iff } k \neq s. \]

For \(k = 0 \), this is a result in the literature.

\(\diamond \) ✓ Transversality condition: Direct computation using asymptotics.
Breathers for the Klein-Gordon Equation

Aspects of the Proof 3/3.

\[u_k - \Psi^{\tau_k}_{\mu_k} \ast [(u \ast u \ast u)_k] = 0 \quad (k \neq 0 !) \]

where \(u = (u_k)_k \in \ell^1(\mathbb{Z}, X) \) and \(\mu_k = k^2 \omega^2 - m^2 \)
with asymptotic conditions given by \(\tau_k \).

- ✔ Reformulate as \(f(u, \lambda) = 0 \).
- ✔ Replace \(\tau_s \) by \(\tau_s + \lambda \): “Invisible” bifurcation parameter.
- ✔ Recall Lemma: Choose \(\tau_s \) “good” and all other \(\tau_k \) “bad” s.t.

\[v_k - 3 \Psi^{\tau_k}_{\mu_k} \ast [w_0^2 v_k] = 0 \Rightarrow v_k \equiv 0 \quad \text{holds iff } k \neq s. \]

For \(k = 0 \), this is a result in the literature.

- ✔ Transversality condition: Direct computation using asymptotics.
- ✔ Regularity of breathers: Scaling property of convolution with \(\Psi^{\tau_k}_{\mu_k} \).
Let $X := \{ u \in C_{\text{rad}}(\mathbb{R}^3, \mathbb{R}) \mid \sup(1 + |x|)|u(x)| < \infty \}$.

Let $w_0 \in X$ with $-\Delta w_0 + m^2 w_0 = w_0^3$ on \mathbb{R}^3; choose $\omega > m$ and $s \in \mathbb{N}$.

Theorem 1 [S. 2019]

There exist an interval $I \subseteq \mathbb{R}$, $0 \in I$ and a family $(U^\eta)_{\eta \in I} \subseteq C^2_{\text{per}}(\mathbb{R}, X)$ of real-valued, classical breather solutions $U^\eta(t, x) = \sum_k e^{ik\omega t} u^\eta_k(x)$ of the Klein-Gordon equation

$$\partial^2_t U - \Delta U + m^2 U = U^3 \quad \text{on } \mathbb{R} \times \mathbb{R}^3$$

which is a continuous curve in $C(\mathbb{R}, X)$ with

- $U^0(t, x) = w_0(x)$,
- U^η is $\frac{2\pi}{\omega}$-periodic in time with ∞ many nonzero modes ($\eta \neq 0$),
- $\frac{d}{d\eta} \big|_{\eta=0} u^\eta_k \neq 0$ iff $k = s$ (excitation of s-th mode).
1 Breather solutions

2 Breather solutions for the cubic Klein-Gordon Equation

\[\partial_t^2 U - \Delta U + m^2 U = U^3 \text{ on } \mathbb{R} \times \mathbb{R}^3 \]

3 Breather solutions for the nonlinear Wave Equation

\[\partial_t^2 U - \Delta U = |U|^{p-2} U \text{ on } \mathbb{R} \times \mathbb{R}^N \]
Breathers for the Wave Equation

This is work in progress.

Theorem 2 [sketch]
Let \(\Gamma \in S(\mathbb{R}^N) \), \(\Gamma > 0 \) and \(N \geq 2 \), \(2 < p < 2(N + 1)/(N - 1) \). Then the nonlinear wave equation

\[
\partial_t^2 U - \Delta U = \Gamma(x)|U|^{p-2}U \quad \text{on} \ [0, 2\pi] \times \mathbb{R}^N
\]

has a nontrivial dual ground state \(U : \mathbb{R} \times \mathbb{R}^N \rightarrow \mathbb{R} \), which is \(2\pi \)-periodic (\(\pi \)-antiperiodic) in time.
Breathers for the Wave Equation

Remarks

“Large” breathers via variational methods: dual ground states.

Drawbacks: Need localized coefficient $\Gamma(x)$ in the nonlinearity.

$N=3, p=4$ not accessible (endpoint case).

To do: Regularity, extension to Klein-Gordon Equation.

Aspects of the Proof

A formal solution map for $\partial^2_t U - \Delta U = F$ on $[0, 2\pi] \times \mathbb{R}^N$.

Dual variational techniques.
Breathers for the Wave Equation

Remarks

▷ “Large” breathers via variational methods: dual ground states.
▷ Drawbacks: Need localized coefficient $\Gamma(x)$ in the nonlinearity.

\[N = 3, \, p = 4 \text{ not accessible (endpoint case).} \]
▷ To do: Regularity, extension to Klein-Gordon Equation.
Breathers for the Wave Equation

Remarks

▷ “Large” breathers via variational methods: dual ground states.
▷ Drawbacks: Need localized coefficient $\Gamma(x)$ in the nonlinearity.

$$N = 3, p = 4 \text{ not accessible (endpoint case).}$$
▷ To do: Regularity, extension to Klein-Gordon Equation.

Aspects of the Proof
Remarks

▷ “Large” breathers via variational methods: dual ground states.
▷ Drawbacks: Need localized coefficient $\Gamma(x)$ in the nonlinearity.

$$N = 3, \ p = 4 \text{ not accessible (endpoint case).}$$

▷ To do: Regularity, extension to Klein-Gordon Equation.

Aspects of the Proof

▷ A formal solution map for

$$\partial_t^2 U - \Delta U = F \quad \text{on } [0, 2\pi] \times \mathbb{R}^N,$$

▷ Dual variational techniques.
Breathers for the Wave Equation

Aspects of the Proof 1/2: Formal solution map.

\[-\Delta - k^2 u_k = f_k \text{ on } \mathbb{R}^N. \]

Restriction to odd \(k \in \mathbb{Z} \) yields a nonlinear Helmholtz system. Idea:

\[u_k = \Psi_k^2 \ast f_k, \]

\[U(t, x) = \sum_{k \text{ odd}} e^{i k t} (\Psi_k^2 \ast f_k)(x) \]

with \(f_k(x) = \int_0^{2\pi} F(t, x) e^{-i k t} dt \).
Breathers for the Wave Equation

Aspects of the Proof 1/2: Formal solution map.

\[\partial_t^2 U - \Delta U = F \quad \text{on} \quad [0, 2\pi] \times \mathbb{R}^N \]
Breathers for the Wave Equation

Aspects of the Proof 1/2: Formal solution map.

\[\partial_t^2 U - \Delta U = F \quad \text{on } [0, 2\pi] \times \mathbb{R}^N \]

with \(U(t, x) = \sum_k e^{ikt} u_k(x) \) and \(F(t, x) = \sum_k e^{ikt} f_k(x) \), this leads to

\[(-\Delta - k^2) u_k = f_k \quad \text{on } \mathbb{R}^N. \]
Breathers for the Wave Equation

Aspects of the Proof 1/2: Formal solution map.

\[
\partial_t^2 U - \Delta U = F \quad \text{on } [0, 2\pi] \times \mathbb{R}^N
\]

with \(U(t, x) = \sum_k e^{ikt} u_k(x) \) and \(F(t, x) = \sum_k e^{ikt} f_k(x) \), this leads to

\[
(-\Delta - k^2) u_k = f_k \quad \text{on } \mathbb{R}^N.
\]

Restriction to odd \(k \in \mathbb{Z} \) yields a nonlinear Helmholtz system. Idea:

\[
u_k = \Psi_{k^2} \ast f_k,
\]
Breathers for the Wave Equation

Aspects of the Proof 1/2: Formal solution map.

\[\partial_t^2 U - \Delta U = F \quad \text{on} \quad [0, 2\pi] \times \mathbb{R}^N \]

with \(U(t, x) = \sum_k e^{ikt} u_k(x) \) and \(F(t, x) = \sum_k e^{ikt} f_k(x) \), this leads to

\[(-\Delta - k^2) u_k = f_k \quad \text{on} \quad \mathbb{R}^N. \]

Restriction to odd \(k \in \mathbb{Z} \) yields a nonlinear Helmholtz system. Idea:

\[u_k = \Psi_{k^2} \ast f_k, \]

\[U(t, x) = \sum_{k \text{ odd}} e^{ikt}(\Psi_{k^2} \ast f_k)(x) \]
Breathers for the Wave Equation

Aspects of the Proof 1/2: Formal solution map.

\[\partial_t^2 U - \Delta U = F \quad \text{on} \quad [0, 2\pi] \times \mathbb{R}^N \]

with \(U(t, x) = \sum_k e^{ikt} u_k(x) \) and \(F(t, x) = \sum_k e^{ikt} f_k(x) \), this leads to

\[(-\Delta - k^2) u_k = f_k \quad \text{on} \quad \mathbb{R}^N. \]

Restriction to odd \(k \in \mathbb{Z} \) yields a nonlinear Helmholtz system. Idea:

\[u_k = \Psi_{k2} \ast f_k, \]

\[U(t, x) = \sum_{k \text{ odd}} e^{ikt} (\Psi_{k2} \ast f_k)(x) \quad \text{with} \quad f_k(x) = \int_0^{2\pi} F(t, x) e^{-ikt} \frac{dt}{2\pi}. \]
Aspects of the Proof 2/2: Dual variational techniques.

\[
\partial_t^2 U - \Delta U = \Gamma(x)|U|^{p-2}U \quad \text{on} \quad [0, 2\pi] \times \mathbb{R}^N
\]

\[\text{Substitution } V : \Gamma(x) = \frac{1}{p'}|U|^{p-2}U \text{ yields } \left(\partial_t^2 - \Delta\right) \left[\Gamma(x) - \frac{1}{p}V\right] = \Gamma(x) \frac{1}{p}V \text{ on } [0, 2\pi] \times \mathbb{R}^N.\]

\[\text{Then, formally, solve } \frac{1}{p'}V^{p'-2}V = L_{\Gamma[V]} \text{ on } [0, 2\pi] \times \mathbb{R}^N \]

where \(L_{\Gamma[V]}(t, x) = \sum_{k \text{ odd}} e^{ikt} \Gamma(x) \frac{1}{p}(\Psi_k^2 \ast [\frac{1}{p}v_k])(x).\)
Breathers for the Wave Equation

Aspects of the Proof 2/2: Dual variational techniques.

\[\partial_t^2 U - \Delta U = \Gamma(x)|U|^{p-2} U \quad \text{on} \quad [0, 2\pi] \times \mathbb{R}^N \]
Aspects of the Proof 2/2: Dual variational techniques.

$$\partial_t^2 U - \Delta U = \Gamma(x)|U|^{p-2}U \quad \text{on } [0, 2\pi] \times \mathbb{R}^N$$

▷ Substitution $V := \Gamma(x)^{1/p'}|U|^{p-2}U$ yields

$$(\partial_t^2 - \Delta) \left[\Gamma(x)^{-1/p} |V|^{p'-2}V \right] = \Gamma(x)^{1/p}V \quad \text{on } [0, 2\pi] \times \mathbb{R}^N.$$
Breathers for the Wave Equation

Aspects of the Proof 2/2: Dual variational techniques.

\[\partial_t^2 U - \Delta U = \Gamma(x)|U|^{p-2}U \quad \text{on} \quad [0, 2\pi] \times \mathbb{R}^N \]

\(\triangleright\) Substitution \(V := \Gamma(x)^{1/p'}|U|^{p-2}U \) yields

\[\left(\partial_t^2 - \Delta \right) \left[\Gamma(x)^{-1/p} V \right]^{p'-2} V = \Gamma(x)^{1/p} V \quad \text{on} \quad [0, 2\pi] \times \mathbb{R}^N. \]

\(\triangleright\) Then, formally, solve

\[|V|^{p'-2} V = \mathcal{L}_\Gamma[V] \quad \text{on} \quad [0, 2\pi] \times \mathbb{R}^N \]

where \(\mathcal{L}_\Gamma[V](t, x) = \sum_{k \text{ odd}} e^{ikt} \Gamma(x)^{1/p}(\Psi_k^2 * [\Gamma^{1/p} v_k])(x) \).
Breathers for the Wave Equation

Aspects of the Proof 2/2: Dual variational techniques.

\[\partial_t^2 U - \Delta U = \Gamma(x)|U|^{p-2}U \quad \text{on } [0, 2\pi] \times \mathbb{R}^N \]

\[\text{Substitution } V := \Gamma(x)^{1/p'}|U|^{p-2}U \text{ yields } \]

\[(\partial_t^2 - \Delta) \left[\Gamma(x)^{-1/p} |V|^{p'-2} V \right] = \Gamma(x)^{1/p} V \quad \text{on } [0, 2\pi] \times \mathbb{R}^N. \]

\[\text{Then, formally, solve } \]

\[|V|^{p'-2} V = L_\Gamma[V] \quad \text{on } [0, 2\pi] \times \mathbb{R}^N \]

where \(L_\Gamma[V](t, x) = \sum_{k \text{ odd}} e^{ikt} \Gamma(x)^{1/p} (\Psi_k^2 * [\Gamma^{1/p} V_k])(x). \)

\[L_\Gamma : L^{p'}([0, 2\pi] \times \mathbb{R}^N) \to L^{p}([0, 2\pi] \times \mathbb{R}^N) \text{ is symmetric, compact.} \]
Breathers for the Wave Equation

Aspects of the Proof 2/2: Dual variational techniques.

\[|V|^p' - 2V = \mathcal{L}_\Gamma[V] \quad \text{on } [0, 2\pi] \times \mathbb{R}^N \]

with \(\mathcal{L}_\Gamma : L^{p'}([0, 2\pi] \times \mathbb{R}^N) \to L^p([0, 2\pi] \times \mathbb{R}^N) \) symmetric and compact.
Breathers for the Wave Equation

Aspects of the Proof 2/2: Dual variational techniques.

\[|V|^{p'} - 2 V = \mathcal{L}_\Gamma[V] \text{ on } [0, 2\pi] \times \mathbb{R}^N \]

with \(\mathcal{L}_\Gamma : L^{p'}([0, 2\pi] \times \mathbb{R}^N) \to L^p([0, 2\pi] \times \mathbb{R}^N) \) symmetric and compact.

\[\triangleright \] Introduce \(J : L^{p'}([0, 2\pi] \times \mathbb{R}^N) \to \mathbb{R} \) via

\[J(V) := \frac{1}{p'} \int |V|^{p'} \, d(t, x) - \frac{1}{2} \int V \mathcal{L}_\Gamma[V] \, d(t, x). \]
Breathers for the Wave Equation

Aspects of the Proof 2/2: Dual variational techniques.

\[|V|^{p'-2}V = \mathcal{L}_\Gamma[V] \quad \text{on} \quad [0, 2\pi] \times \mathbb{R}^N \]

with \(\mathcal{L}_\Gamma : L^{p'}([0, 2\pi] \times \mathbb{R}^N) \rightarrow L^p([0, 2\pi] \times \mathbb{R}^N) \) symmetric and compact.

\(\triangleright \) Introduce \(J : L^{p'}([0, 2\pi] \times \mathbb{R}^N) \rightarrow \mathbb{R} \) via

\[J(V) := \frac{1}{p'} \int |V|^{p'} \, d(t, x) - \frac{1}{2} \int V \mathcal{L}_\Gamma[V] \, d(t, x). \]

Following Evéquoz and Weth (2015, stationary case),

\(\triangleright \) \(J \) has the mountain pass geometry,

\(\triangleright \) \(J \) satisfies the Palais-Smale condition,
Breathers for the Wave Equation

Aspects of the Proof 2/2: Dual variational techniques.

\[|V|^{p'-2} V = \mathcal{L}_\Gamma [V] \text{ on } [0, 2\pi] \times \mathbb{R}^N \]

with \(\mathcal{L}_\Gamma : L^{p'}([0, 2\pi] \times \mathbb{R}^N) \to L^p([0, 2\pi] \times \mathbb{R}^N) \) symmetric and compact.

▷ Introduce \(J : L^{p'}([0, 2\pi] \times \mathbb{R}^N) \to \mathbb{R} \) via

\[
J(V) := \frac{1}{p'} \int |V|^{p'} \, d(t,x) - \frac{1}{2} \int V \, \mathcal{L}_\Gamma [V] \, d(t,x).
\]

Following Evéquoz and Weth (2015, stationary case),

▷ \(J \) has the mountain pass geometry,

▷ \(J \) satisfies the Palais-Smale condition,

▷ hence \(J \) has a nontrivial ground state \(V_0 \in L^{p'}([0, 2\pi] \times \mathbb{R}^N) \).

\[\rightsquigarrow \text{“Dual” ground state } U_0 = \Gamma(x)^{-1/p} |V_0|^{p'-2} V_0. \]
Thank you for your attention!
Thank you for your attention!

- The bifurcation result for the KG equation is part of my PhD thesis (KITopen, 2019).