Webrelaunch 2020

Functional Analysis (Wintersemester 2007/08)

  • Dozent*in: Prof. i. R. Dr. Lutz Weis
  • Veranstaltungen: Vorlesung (1048), Übung (1049)
  • Semesterwochenstunden: 4+2
  • Hörerkreis: Alle Diplom-Studiengänge nach Vordiplom
Vorlesung: Dienstag 9:45-11:15 Neuer Hörsaal
Freitag 9:45-11:15 Plank-Hörsaal
Übung: Donnerstag 15:45-17:15 Neuer Hörsaal


In this class we give an introduction to the theory of linear operators on Banach spaces.
In particular we consider spaces of continuous and integrable functions and integral operators on such spaces. Since these spaces are infinite dimensional careful considerations of convergence and compactness in Banach spaces are necessary.
In the case of Hilbert space (spaces with an inner product) one obtains elegant generalizations of the theory of euclidean spaces known from Linear Algebra and Analysis courses.
In many ways functional analysis provides basic concepts and methods used in advanced classes on partial differential equations, numerical analysis or stochastics. We also plan to offer a sequel to this course in the summer semester 08.

For the exercise sessions (exercise sheets, etc.), click here.


Voraussichtlicher Termin der Prüfung:
07.04.2008 bis 09.04.2008 (mündliche Prüfungen)

Anmeldung: 01.02.08 - 15.02.08 im Sekretariat Raum 212 bei Frau Basmer.


  • D. Werner: Funktionalanalysis. Springer.
  • H.W. Alt: Lineare Funktionalanalysis. Springer.
  • J.B. Conway: A Course in Functional Analysis. Springer.