Institut für Analysis
WS2019/20
Prof. Dr. Dorothee Frey
M.Sc. Bas Nieraeth

Functional Analysis

Solutions to exercise sheet 2

Exercise 1: Relative metrics
Let (X, d) be a metric space and let $M \subseteq X$ be equipped with the relative metric d_M, i.e., the restriction of d to $M \times M$.

(a) Show that $A \subseteq M$ is open in M if and only if there exists a set $A' \subseteq X$ that is open in X satisfying $A = A' \cap M$. Prove an analogous result for closed sets.

(b) For a subset $A \subseteq M$ we denote the closure of A with respect to d_M as \overline{A}^M and the closure with respect to d as \overline{A}. Show that $\overline{A}^M = \overline{A} \cap M$.

(c) (Tricky) Suppose that X is separable. Prove that M is also separable.

Solution: We begin with a general observation about balls with respect to d_M. We denote the ball centered at $x \in M$ with radius $r > 0$ with respect to d_M by $B_M(x, r)$, while we denote this ball with respect to d by $B(x, r)$. Then

$$ B_M(x, r) = \{y \in M : d_M(x, y) < r\} $$

$$ = \{y \in X : y \in M \text{ and } d(x, y) < r\} $$

$$ = M \cap B(x, r). $$

(1)

(a) “\Leftarrow”

Suppose $A = A' \cap M$ for some set A' that is open in (X, d). We wish to show that A is open in (M, d_M). To this end, let $x \in A$. Our goal is to find an $r > 0$ such that $B_M(x, r) \subseteq A$. Since also $x \in A'$, so we can find an $r > 0$ such that $B(x, r) \subseteq A'$. But then by (1) we have

$$ B_M(x, r) = M \cap B(x, r) \subseteq M \cap A' = A. $$

Thus, A is open with respect to d_M, as desired.

“\Rightarrow”

Suppose $A \subseteq M$ is open with respect to d_M. Then for each $x \in A$ we can find an $r_x > 0$ such that $B_M(x, r_x) \subseteq A$. We claim that

$$ A = \bigcup_{x \in A} B_M(x, r_x). $$

(2)

Indeed, the inclusion $A \subseteq \bigcup_{x \in A} B_M(x, r_x)$ follows from the fact that each $x \in A$ lies in the ball $B(x, r_x)$. For the converse inclusion, let $y \in \bigcup_{x \in A} B_M(x, r_x)$. Then there is some $x \in A$ such that $y \in B_M(x, r_x)$. Since $B_M(x, r_x) \subseteq A$, we also have $y \in A$. This proves the claim.

— Turn the page! —
We set \(A' := \bigcup_{x \in A} B(x, r_x) \). Since the balls \(B(x, r_x) \) are open in \((X, d)\), the set \(A' \) is also open in \((X, d)\) as it is a union of open sets. Now note that by (1) and (2) we have

\[
A' \cap M = \bigcup_{x \in A} B(x, r_x) \cap M = \bigcup_{x \in A} B_M(x, r_x) = A.
\]

The result follows.

For the result about closed sets, we wish to show that \(B \subseteq M \) is closed in \(M \) if and only if there is a set \(B' \subseteq X \) that is closed in \(X \) such that \(B' \cap M = B \).

To prove this result, note that \(B \subseteq M \) is closed with respect to \(d_M \) if and only if \(M \setminus B \) is open with respect to \(d_M \). Thus, by what we have shown about open sets, this is equivalent to the existence of a set \(A' \subseteq X \) that is open in \(X \) such that \(M \setminus B = A' \cap M \). But then for \(B' := X \setminus A' \), which is closed in \(X \), we have

\[
B' \cap M = X \setminus A' \cap M = M \setminus A' = M \setminus (A' \cap M) = M \setminus (M \setminus B) = B.
\]

Thus, the desired equivalence follows.

(b) By part (a), we have the following equality of collections of sets:

\[
\{ F : F \text{ is a closed subset of } (M, d_M) \} = \{ F' \cap M : F' \text{ is a closed subset of } (X, d) \}
\]

Thus\(^1\), we have

\[
\overline{A} \cap M = \bigcap_{F' \supseteq A} F' \cap M = \bigcap_{F' \supseteq A} F' = \bigcap_{F \supseteq A} F = A^M.
\]

(c) Let \(D \) be a countable dense subset of \(X \). Denoting the set of positive rational numbers by \(\mathbb{Q}_+ \), for each rational \(r \in \mathbb{Q}_+ \) and each \(x \in D \) we check if \(B(x, r) \cap M \) is empty or not. If it is not empty, then we choose\(^2\) a point from it. We denote the collection of these points by \(D_M \). Note that \(D_M \) is countable, since it has at most as many elements as \(\mathbb{Q}_+ \times D \).

We claim that the countable set \(D_M \) is dense in \(M \). Since \(\overline{D_M}^M \subseteq M \), it remains to show that \(M \subseteq \overline{D_M}^M \). Let \(y \in M \) and let \(\varepsilon > 0 \). Pick \(r \in \mathbb{Q}_+ \) such that \(0 < r < \frac{\varepsilon}{2} \). Since \(D \) is dense in \(X \), the ball \(B(y; r) \) intersects \(D \) and thus, we may pick a point \(x \in D \cap B(y; r) \). Then the set \(B(x, r) \cap M \) is not empty as it contains the point \(y \). Thus, by construction, there is a point \(z \in D_M \) that lies in \(B(x, r) \cap M \). It remains to note that \(z \in B_M(y, \varepsilon) \).

Indeed, by the triangle inequality we have

\[
d(z, y) \leq d(z, x) + d(x, y) < 2r < \varepsilon.
\]

Thus, we have shown that \(B_M(y, \varepsilon) \cap D_M \) is non-empty. This proves that \(y \in \overline{D_M}^M \) and thus \(\overline{D_M}^M = M \).

\(^1\)Here we are using the fact that the closure of a set \(C \) in a metric space \((Y, \rho)\) is the intersection of all closed sets in \(Y \) containing \(C \), c.f., Exercise 3(d) of Exercise sheet 0.

\(^2\)We are using the axiom of choice here.
Exercise 2: Separability in normed spaces

Let $(X, \| \cdot \|)$ be a normed space. Show that the following are equivalent:

(i) X is separable;

(ii) The unit ball $B_X := \{ x \in X : \| x \| < 1 \}$ is separable;

(iii) The unit sphere $S_X := \{ x \in X : \| x \| = 1 \}$ is separable.

Solution: Our strategy will be to show that (i)\iff(ii) and (i)\iff(iii). Note that in both cases “\Rightarrow” follows from Exercise 1(c). Thus it remains to prove the “\Leftarrow” cases.

“(i)\Leftarrow(ii)”

Let D be a countable dense subset in B_X. By a result in the lecture, it suffices to show that $\text{span} \ D$ is dense in X to conclude that X is separable. Let $x \in X$. As $0 \in \text{span} \ D$, we may assume that $x \neq 0$. Then set $y := \frac{x}{2\|x\|}$. Then $\|y\| = \frac{1}{2} < 1$, so $y \in B_X$. Since D is dense in B_X, we can find a sequence $(y_n)_{n \in \mathbb{N}}$ in B_X such that $y_n \to y$ as $n \to \infty$. Now set $x_n := 2\|x\|y_n$. Then $(x_n)_{n \in \mathbb{N}}$ is a sequence in $\text{span} \ D$. Moreover, we have

$$\|x_n - x\| = 2\|x\|\|y_n - y\| \to 0, \quad \text{as } n \to \infty.$$

Hence, we have shown that any point in X is the limit of a sequence in $\text{span} \ D$. Thus, $\overline{\text{span} \ D} = X$, as desired.

“(i)\Leftarrow(iii)”

The proof is completely analogous to the proof of “(i)\Leftarrow(ii)”, except that we now take $y := \frac{x}{\|x\|}$ and $x_n = \|x\|y_n$.

Exercise 3: Separability and density under continuous maps

Let (X, d) and (Y, ρ) be metric spaces and let $f : X \to Y$ be continuous.

(a) Suppose that $A \subseteq X$ is dense in X. Show that $f(A)$ is dense in $f(X)$.

(b) Show that if X is separable, then so is $f(X)$.

Solution:

(a) To prove this, it is probably easiest to use sequences. However, we give a proof that works in a more general context here.

For this exercise one can use the implication\(^3\) that if f is continuous, then $f(\overline{B}^X) \subseteq \overline{f(B)}^Y$ for any set $B \subseteq X$. Here, for clarity, we are writing the space in which we are taking the closure as a superscript.

To prove this implication, note that $f(\overline{B}^X) \subseteq \overline{f(B)^Y}$ is equivalent to the inclusion $\overline{B}^X \subseteq f^{-1}(\overline{f(B)}^Y)$. But to prove the latter, one can note that since f is continuous and $\overline{f(B)}^Y$

\(^3\)Actually, this is an equivalence!
is closed in \(Y \), the set \(f^{-1}(f(B)^Y) \) is closed in \(X \). Since \(B \) is a subset of \(f^{-1}(f(B)^Y) \), also \(\overline{B}^X \subseteq f^{-1}(f(B)^Y) \), as desired.

Now we will prove that if \(A \) is dense in \(X \), then \(f(A) \) is dense in \(f(X) \). Indeed, since \(\overline{A}^X = X \), our implication implies that \(f(X) = f(\overline{A}^X) \subseteq f(A)^Y \). But then, by Exercise 1(b), we have
\[
\overline{f(A)}^{f(X)} = \overline{f(A)}^Y \cap f(X) \supseteq f(X) \cap f(X) = f(X).
\]
Thus, since also \(\overline{f(A)}^{f(X)} \subseteq f(X) \), we have \(\overline{f(A)}^{f(X)} = f(X) \), as asserted.

(b) Let \(D \) be a countable dense subset in \(X \). Then \(f(D) \) is a countable subset of \(f(X) \). Moreover, by part (a), it is dense. We conclude that \(f(X) \) is separable.

Exercise 4: Failure of completeness of \(\mathbb{R} \) with an equivalent metric
Consider the real line \(\mathbb{R} \) equipped with the metric \(d(x, y) := |\arctan(x) - \arctan(y)| \).

(a) Let \((x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} \) be a sequence and \(x \in \mathbb{R} \). Show that \(\lim_{n \to \infty} d(x_n, x) = 0 \) if and only if \(\lim_{n \to \infty} |x_n - x| = 0 \), i.e., show that \(d \) is equivalent to the usual metric on \(\mathbb{R} \).

(b) Show that \((\mathbb{R}, d) \) is not complete.

Solution:

(a) We first prove the direct implication. Suppose \(d(x_n, x) \to 0 \) as \(n \to \infty \). Then this is equivalent to saying that the sequence \((\arctan(x_n))_{n \in \mathbb{N}} \) converges to \(\arctan(x) \) with respect to the usual metric on \(\mathbb{R} \). Since \(\tan \) is continuous, this means that \(\lim_{n \to \infty} x_n = \lim_{n \to \infty} \tan(\arctan(x_n)) = \tan(\arctan(x)) = x \) with respect to the usual metric on \(\mathbb{R} \), i.e., \(\lim_{n \to \infty} |x_n - x| = 0 \).

The converse implication is proven analogously, this time using the fact that \(\arctan \) is continuous.

(b) Consider the sequence \((n)_{n \in \mathbb{N}} \). Then, since
\[
\lim_{m, n \to \infty} |\arctan(n) - \arctan(m)| \leq \lim_{m, n \to \infty} |\arctan(n) - \frac{\pi}{2}| + |\frac{\pi}{2} - \arctan(m)| = 0,
\]
this sequence is a Cauchy sequence with respect to \(d \). However, this sequence is not convergent with respect to \(d \). Indeed, if it were convergent with respect to \(d \), then by part (a), the sequence \((n)_{n \in \mathbb{N}} \) would converge in \(\mathbb{R} \) with respect to its usual metric, which is absurd.

Thus, we conclude that \((\mathbb{R}, d) \) is not complete.

Exercise 5: Point evaluations on \(C([0, 1]) \)
Consider the space \(C([0, 1]) \) equipped with the supremum norm \(\| \cdot \|_\infty \).

(a) Let \(x \in [0, 1] \) and define the evaluation map \(\text{ev}_x : C([0, 1]) \to \mathbb{R} \) by \(\text{ev}_x(f) := f(x) \). Prove that \(\text{ev}_x \) is continuous.

(b) Using the evaluation maps, prove that the following sets are closed in \(C([0, 1]) \):

(i) \(A = \{ f \in C([0, 1]) : f(x) \in F \} \), where \(x \in [0, 1] \) and \(F \subseteq \mathbb{R} \) is a closed set.
(ii) \(B = \{ f \in C([0,1]) : f(x) \geq 0 \text{ for all } x \in [0,1] \} \).

Solution:

(a) Note that
\[
|ev_x(f) - ev_x(g)| = |f(x) - g(x)| \leq \|f - g\|_\infty.
\]

Thus, \(ev_x \) is even Lipschitz continuous.

To be more precise, we can let \(\varepsilon > 0 \) and choose \(\delta := \varepsilon \). Then if \(\|f - g\|_\infty < \delta \), it follows from the inequality (3) that \(|ev_x(f) - ev_x(g)| < \varepsilon \), proving that \(ev_x \) is continuous.

Alternatively, one could use the fact that if a sequence \((f_n)_{n \in \mathbb{N}} \) in \(C([0,1]) \) converges to a function \(f \in C([0,1]) \) with respect to \(\| \cdot \|_\infty \), then (3) implies that \(ev_x(f_n) \to ev_x(f) \) in \(\mathbb{R} \), again proving that \(ev_x \) is continuous.

(b) For (i), note that since \(ev_x \) is continuous and \(F \) is closed, the set
\[
ev_x^{-1}(F) = \{ f \in C([0,1]) : ev_x(f) \in F \} = \{ f \in C([0,1]) : f(x) \in F \} = A
\]
is again closed, proving the result.

For (ii) we first note that since the set \([0,\infty)\) is closed in \(\mathbb{R} \), the set
\[
ev_x^{-1}([0,\infty)) = \{ f \in C([0,1]) : ev_x(f) \in [0,\infty) \} = \{ f \in C([0,1]) : f(x) \geq 0 \}
\]
is also closed. Thus, since intersections of closed sets are again closed, the set
\[
\bigcap_{x \in [0,1]} ev_x^{-1}([0,\infty)) = \{ f \in C([0,1]) : f(x) \geq 0 \text{ for all } x \in [0,1] \} = B
\]
is closed. The assertion follows.