Remark. The exercises marked with a * can be handed in for correction in the “Funktionalanalysis” box in the atrium of building 20.30 at the latest at 14:00 on the day of the exercise class next week.

Exercise 1: The operator norm
Let \(L(X,Y) \) be the space of bounded linear operators between two normed spaces \(X \neq \{0\} \) and \(Y \), equipped with the operator norm \(\|T\| = \sup_{x \in X, x \neq 0} \frac{\|Tx\|}{\|x\|} \).

(a) Prove the equalities
\[
\|T\| = \inf \{ C \geq 0 : \|Tx\| \leq C\|x\| \text{ for all } x \in X \} = \sup_{\|x\|=1} \|Tx\| = \sup_{\|x\|\leq 1} \frac{\|Tx\|}{\|x\|}.
\]

(b) Prove that \(L(X,Y) \) is a vector space and prove that \(\| \cdot \| \) is a norm on \(L(X,Y) \).

* Exercise 2: Multiplication operators on \(\ell^p \)
Let \(y = (y_j)_{j \in \mathbb{N}} \subseteq \mathbb{K} \) be a fixed sequence. For each sequence \(x = (x_j)_{j \in \mathbb{N}} \subseteq \mathbb{K} \) we define a new sequence
\[
T_yx := (y_jx_j)_{j \in \mathbb{N}}.
\]
Note that \(T_y \) defines a linear operator on the space of all sequences in \(\mathbb{K} \).

Let \(p \in [1, \infty] \). Show that the following are equivalent:

(i) \(T_y(\ell^p) \subseteq \ell^p \) and \(T_y : \ell^p \to \ell^p \) is a bounded operator.

(ii) \(y \in \ell^\infty \);

Moreover, show that in this case we have \(\|T_y\| = \|y\|_\infty \).

* Exercise 3: Integral operators
Let \(k \) be a continuous function \(k : [0,1] \times [0,1] \to \mathbb{R} \). For each \(f \in C([0,1]) \) we define a function \(Tf : [0,1] \to \mathbb{R} \) by
\[
Tf(t) := \int_0^1 k(t,s)f(s) \, ds.
\]

(a) Show that \(Tf \in C([0,1]) \) for \(f \in C([0,1]) \) and, moreover, show that \(T : C([0,1]) \to C([0,1]) \) is a linear operator.
(b) Show that
\[\|T\| = \sup_{t \in [0,1]} \int_{0}^{1} |k(t, s)| \, ds. \]

Exercise 4: A reverse estimate
Let \(X, Y \) be normed spaces and let \(T \in L(X, Y) \). Suppose there is a \(c > 0 \) such that
\[\|Tx\| \geq c\|x\| \quad \text{for all } x \in X. \]

(a) Show that if \(X \) is a Banach space, then the range \(R(T) \) of \(T \) is closed in \(Y \).

(b) Show that \(T \) is injective and show that the operator \(T^{-1} : R(T) \to X \) is bounded with \(\|T^{-1}\| \leq c^{-1} \).

Exercise 5: Invertible operators
Let \(X \) be a Banach space and denote the set of invertible operators in \(L(X) \) by \(U(L(X)) \).

(a) Suppose \(T \in L(X) \) with \(\|T\| < 1 \). Prove that \(\text{Id} - T \in U(L(X)) \) with
\[(\text{Id} - T)^{-1} = \sum_{n=0}^{\infty} T^n, \]
where the series converges in \(L(X) \).

(b) Prove that \(U(L(X)) \) is an open subset of \(L(X) \).

\(\text{(Hint: first show that if } S \in L(X) \text{ is close enough to } T \in U(L(X)), \text{ then } ST^{-1} \text{ is invertible.)} \)

Exercise 6: Projections induced by direct sums
Let \(X \) be a normed space and suppose that \(X \) decomposes as a direct sum \(X = X_1 \oplus X_2 \). We define a map \(P : X \to X \) by \(Px := x_1 \), where \(x = x_1 + x_2 \) is the unique decomposition of \(x \in X \) with \(x_1 \in X_1 \) and \(x_2 \in X_2 \).

Prove that \(P \) is the unique linear projection satisfying \(R(P) = X_1 \) and \(N(P) = X_2 \).