Functional Analysis

Solutions to exercise sheet 5

Exercise 1: The norm on ℓ^∞ / c_0.
Show that the quotient norm on ℓ^∞ / c_0 satisfies the identity
$$\|\hat{x}\| = \limsup_{j \to \infty} |x_j|,$$
where $x = (x_j)_{j \in \mathbb{N}} \in \ell^\infty$, and where \hat{x} denotes the class represented by x in ℓ^∞ / c_0.

Solution: Let $x \in \ell^\infty$ and for each $n \in \mathbb{N}$ we set $\pi_n x := (x_1, \ldots, x_n, 0, 0, \ldots) \in c_0$. Then,
$$\|\hat{x}\| = \inf_{y \in c_0} \|x - y\|_{\infty} \leq \inf_{n \in \mathbb{N}} \|x - \pi_n x\|_{\infty} = \inf_{n \in \mathbb{N}} \sup_{j \geq n} |x_j| = \limsup_{j \to \infty} |x_j|.$$
For the converse inequality, let $y \in c_0$. Then
$$\limsup_{j \to \infty} |x_j| \leq \limsup_{j \to \infty} (|x_j - y_j| + |y_j|) = \limsup_{j \to \infty} |x_j - y_j| \leq \|x - y\|_{\infty}.$$ Taking an infimum over all $y \in c_0$ yields $\limsup_{j \to \infty} |x_j| \leq \|\hat{x}\|$. Thus, $\|\hat{x}\| = \limsup_{j \to \infty} |x_j|$, as desired.

Exercise 2: Quotients of $C([0,1])$.
Let $0 \leq a \leq b \leq 1$ and set $[a,b] \subseteq [0,1]$.

(a) Show that $J := \{ f \in C[0,1] : f|_{[a,b]} = 0 \}$ is a closed subset of $C([0,1])$.

Let $f \in C([0,1])$ and let \hat{f} denote the class represented by f in $C([0,1])/J$.

(b) Show that \hat{f} consists precisely of those functions that coincide with f on $[a,b]$.

(c) Prove that $C([0,1])/J \cong C([a,b])$, i.e., prove that there is a continuous linear isomorphism between the two spaces with a continuous inverse.

Solution:

(a) Suppose $(f_n)_{n \in \mathbb{N}}$ is a sequence in J that converges in $C([0,1])$ with limit $f \in C([0,1])$. To conclude that J is closed, we need to show that $f \in J$. Note that since uniform convergence implies pointwise convergence, we have that for every $x \in [a,b]$,
$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f_n|_{[a,b]}(x) = 0.$$
Hence, $f|_{[a,b]} = 0$ and thus $f \in J$. The assertion follows.
(b) If \(g \) is in the class \(\hat{f} \), then \(g - f \in J \). Thus, for every \(x \in [a, b] \) we have
\[
g(x) - f(x) = (g - f)|_{[a,b]}(x) = 0.
\]
Hence, \(g(x) = f(x) \) for every \(x \in [a, b] \), as asserted.

(c) We define \(T : C([0,1])/J \to C([a,b]) \) by \(T \hat{f} := f|_{[a,b]} \). Note that this map is well-defined. Indeed, if \(g \in \hat{f} \), then by part (b) we have \(f|_{[a,b]} = g|_{[a,b]} \) so that the value of \(T \hat{f} \) does not depend on the representative chosen for \(\hat{f} \). We omit the proof of the linearity of \(T \), but we will prove that \(T \) satisfies the remaining necessary properties.

We check that \(T \) is bijective. To see that it is injective, suppose that \(T \hat{f} = 0 \) for some \(\hat{f} \in C([0,1])/J \). Then \(f|_{[a,b]} = 0 \). Since the 0 function also vanishes on \([a, b]\), both 0 and \(f \) are in the same class. Hence \(\hat{f} = 0 = 0 \), proving that \(T \) is injective.

To prove that \(T \) is surjective, let \(g \in C([a,b]) \). We define \(f : [0,1] \to \mathbb{R} \) by
\[
f(x) := \begin{cases}
g(x) & \text{if } x \in [a, b],
g(a) & \text{if } x \in [0,a],
g(b) & \text{if } x \in [b,1].
\end{cases}
\]
(1)

Then \(f \in C([0,1]) \) and \(f \) coincides with \(g \) on \([a, b]\). Thus, \(T \hat{f} = f|_{[a,b]} = g \), proving that \(T \) is surjective. We conclude that \(T \) is bijective.

To prove that \(T \) is continuous, we will use a general result.

Proposition 1. Let \(X \) be a normed space and let \(V \) be a closed subspace of \(X \). Let \(Q : X \to X/V \) denote the quotient map and let \(Y \) be a normed space. Then an operator \(T : X/V \to Y \) is continuous if and only if \(T \circ Q : X \to Y \) is continuous.

For the proof we use the following lemma.

Lemma 2. If a set \(U \subseteq X \) is open, then \(Q(U) \) is open in \(X/V \).

Proof. To show that \(Q(U) \) is open, we will show that all of its points are interior points. Let \(\hat{x} \in Q(U) \) and pick \(x \in U \) such that \(Qx = \hat{x} \). Since \(U \) is open, there is an \(r > 0 \) such that \(B(x,r) \subseteq U \).

We claim that \(B_{X/V}(\hat{x},r) \subseteq Q(U) \), which would prove that \(\hat{x} \) is an interior point of \(Q(U) \), as desired. Indeed, suppose \(\hat{y} \in B_{X/V}(\hat{x},r) \). Picking an \(y \in X \) such that \(Qy = \hat{y} \), this means that
\[
\inf_{v \in V} \|x - y - v\| = \|\hat{x} - \hat{y}\| < r.
\]
Thus, there is some \(v \in V \) with \(\|x - y - v\| < r \). Thus, \(y + v \in B(x,r) \subseteq U \). Since the difference of \(y \) and \(y + v \) lies in \(V \), we conclude that
\[
\hat{y} = Qy = Q(y + v) \in Q(U).
\]
This proves the claim and the result follows.

Proof of Proposition 1. If \(T \) is continuous then, since \(Q \) is also continuous, the composition \(T \circ Q \) is also continuous. This proves the direct implication. For the other implication, assume that \(T \circ Q \) is continuous and let \(U \subseteq Y \) be open. Then \(Q^{-1}(T^{-1}(U)) = (T \circ Q)^{-1}(U) \) is also open. But then, by surjectivity of \(Q \) we have \(T^{-1}(U) = Q(Q^{-1}(T^{-1}(U))) \), which, by the lemma, is again open. This proves that \(T \) is continuous, as asserted.
By the proposition it suffices to prove that \(T \circ Q \) is continuous, where \(Q : C([0,1]) \to C([0,1])/J \) is the quotient map. Since \((T \circ Q)(f) = f|_{[a,b]} \), we have
\[
\|(T \circ Q)(f)\|_{\infty} = \|f|_{[a,b]}\|_{\infty} \leq \|f\|_{\infty},
\]
proving the result.

Finally we need to show that \(T \) has a continuous inverse. The inverse of \(T \) is given by \(S : C([a,b]) \to C([0,1])/J, Sg := \hat{f} \), where \(f \) is defined as in (1). Note that per construction, \(f \) and \(g \) have the same range. In particular, they have the same supremum. Hence,
\[
\|Sg\| = \|\hat{f}\| \leq \|f\|_{\infty} = \|g\|_{\infty},
\]
proving that \(S \) is continuous. The result follows.

Exercise 3: A quotient of \(C^1([0,1]) \).
Let \(C^1([0,1]) \) be defined as in Exercise 3 of Exercise sheet 3 and fix \(p \in [0,1] \).

(a) Show that \(J := \{f \in C^1[0,1]: f(p) = f'(p) = 0\} \) is a closed subset of \(C^1([0,1]) \).

Let \(Q : C^1([0,1]) \to C^1([0,1])/J \) be the quotient map. We define a product operation on \(C^1([0,1])/J \) by \(Q(f) \cdot Q(g) := Q(fg) \) for \(f, g \in C^1([0,1]) \).

(b) Prove that this product operation is well-defined, i.e., show that if \(Q(f) = Q(\tilde{f}) \) and \(Q(g) = Q(\tilde{g}) \), then \(Q(f) \cdot Q(g) = Q(\tilde{f}) \cdot Q(\tilde{g}) \).

Let \(V \) denote the 2-dimensional subspace of the space \(\mathbb{R}^{2 \times 2} \) of real \(2 \times 2 \) matrices spanned by the matrices \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) and \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \). Define the map
\[
\phi : C^1([0,1])/J \to V, \quad \phi(Q(f)) := \begin{pmatrix} f(p) & f'(p) \\ 0 & f(p) \end{pmatrix}.
\]

(c) Prove that \(\phi \) is well-defined linear isomorphism that satisfies \(\phi(Q(f) \cdot Q(g)) = \phi(Q(f)) \phi(Q(g)) \), where the multiplication on the right should be interpreted as matrix multiplication.

Solution:

(a) Let \((f_n)_{n \in \mathbb{N}} \) be a sequence in \(J \) that converges in \(C^1([0,1]) \) to some limit \(f \in C^1([0,1]) \). Since \(\|f - f_n\|_{\infty}, \|f' - f'_n\|_{\infty} \leq \|f - f_n\|_{C^1} \to 0 \), we find that both \(f_n \to f \) and \(f'_n \to f' \) uniformly. Since uniform convergence implies pointwise convergence, we have
\[
f(p) = \lim_{n \to \infty} f_n(p) = 0, \quad f'(p) = \lim_{n \to \infty} f'_n(p) = 0.
\]

Thus, \(f \in J \). We conclude that \(J \) is closed in \(C^1([0,1]) \).

(b) If \(Q(f) = Q(\tilde{f}) \) and \(Q(g) = Q(\tilde{g}) \), then \(f - \tilde{f}, g - \tilde{g} \in J \). Thus, \(f(p) = \tilde{f}(p), f'(p) = \tilde{f}'(p) \), and similarly for \(g \). But then
\[
(fg)(p) = f(p)g(p) = \tilde{f}(p)\tilde{g}(p) = (\tilde{f}\tilde{g})(p)
\]
and, by the Leibniz rule for differentiation,
\[
(fg)'(p) = f(p)g'(p) + f'(p)g(p) = \tilde{f}(p)\tilde{g}'(p) + \tilde{f}'(p)\tilde{g}(p) = (\tilde{f}\tilde{g})'(p).
\]
Thus indeed \(Q(f) \cdot Q(g) = Q(fg) = Q(\tilde{f}\tilde{g}) = Q(\tilde{f}) \cdot Q(\tilde{g}) \), as asserted.

— Turn the page! —
To show that ϕ is well-defined we need to check that if $Q(f) = Q(g)$, then $\phi(Q(f)) = \phi(Q(g))$.

If $Q(f) = Q(g)$, then $f(p) = g(p)$ and $f'(p) = g'(p)$. Hence,

\[
\phi(Q(f)) = \begin{pmatrix} f(p) & f'(p) \\ 0 & f(p) \end{pmatrix} = \begin{pmatrix} g(p) & g'(p) \\ 0 & g(p) \end{pmatrix} = \phi(Q(g)),
\]

as desired.

It is straightforward to check that ϕ is linear and we omit this here. We check that ϕ is bijective.

To see that ϕ is injective, suppose $\phi(Q(f)) = 0$. Then $\begin{pmatrix} f(p) & f'(p) \\ 0 & f(p) \end{pmatrix} = 0$ so that $f(p) = f'(p) = 0$, i.e., $f = f - 0 \in J$. Thus, $Q(f) = Q(0) = 0$, and injectivity of ϕ follows.

For surjectivity of ϕ, let $\begin{pmatrix} a \\ 0 \end{pmatrix} \in V$. Define $f : [0, 1] \to \mathbb{R}$ by $f(x) := a + (x - p)b$. Then $f \in C^1([0, 1])$ with $f(p) = a$ and $f'(p) = b$. Hence, $\phi(Q(f)) = \begin{pmatrix} a \\ 0 \end{pmatrix}$. We conclude that ϕ is surjective. Thus, ϕ is a linear isomorphism, as desired.

Finally, we check that ϕ preserves the product operations. Note that for $f, g \in C^1([0, 1])$ it follows from the Leibniz rule for differentiation that

\[
\begin{pmatrix} f(p) & f'(p) \\ 0 & f(p) \end{pmatrix} \begin{pmatrix} g(p) & g'(p) \\ 0 & g(p) \end{pmatrix} = \begin{pmatrix} f(p)g(p) & f(p)g'(p) + f'(p)g(p) \\ 0 & f(p)g(p) \end{pmatrix} = \begin{pmatrix} (fg)(p) & (fg)'(p) \\ 0 & (fg)(p) \end{pmatrix}.
\]

Thus indeed $\phi(Q(f))\phi(Q(g)) = \phi(Q(f \cdot Q(g))$ and the result follows.

Exercise 4: Inclusions of Lebesgue spaces.

Let $p, q \in [1, \infty]$ with $p > q$.

(a) Show that $\ell^q \subseteq \ell^p$, with a strict inclusion.

(Hint: First prove this for $\|x\|_q = 1$.)

(b) Show that $L^p([0, 1]) \subseteq L^q([0, 1])$, with a strict inclusion.

(c) Show that both $L^p(\mathbb{R}) \nsubseteq L^q(\mathbb{R})$ and $L^q(\mathbb{R}) \nsubseteq L^p(\mathbb{R})$.

Solution: For $p \in [1, \infty]$ we define $p' \in [1, \infty]$ through the relation $\frac{1}{p} + \frac{1}{p'} = 1$.

(a) Let $x \in \ell^q$ with $\|x\|_q = 1$. Note that then for all $j \in \mathbb{N}$ we have $|x_j| \leq \|x\|_q = 1$. Thus, since $p - q > 0$, we have $|x_j|^p = |x_j|^q |x_j|^{p-q} \leq |x_j|^q$ and hence

\[
\sum_{j=1}^{N} |x_j|^p \leq \sum_{j=1}^{N} |x_j|^q \leq \|x\|_q^q = 1.
\]

Taking a sup over $N \in \mathbb{N}$ we conclude that $x \in \ell^p$ with $\|x\|_p \leq 1$.

Now suppose $x \in \ell^q$ is arbitrary. If $x = 0$ then clearly $x \in \ell^p$. Otherwise, note that $x = \frac{x}{\|x\|_q} \cdot \frac{\|x\|_q}{x}$. Since $\frac{x}{\|x\|_q}$ has $\|\cdot\|_q$-norm 1, we conclude from our previous estimate that $\|\frac{x}{\|x\|_q}\|_p \leq 1$. Hence,

\[
\|x\|_p = \|x\|_q \cdot \frac{x}{\|x\|_q} \leq \|x\|_q.
\]
Thus, we have a continuous inclusion $\ell^q \hookrightarrow \ell^p$.

To show that the inclusion is proper, we use the fact that $\sum_{j=1}^{\infty} \frac{1}{j^r}$ is finite for $s \in \mathbb{R}$ if and only if $s > 1$.

Choose $s \in \mathbb{R}$ such that $\frac{1}{p} < s < \frac{1}{q}$. Then $sp > 1$, while $sq < 1$. This implies that the sequence $(\frac{1}{j^r})_{j \in \mathbb{N}}$ lies in ℓ^p, but not in ℓ^q. Thus, the inclusion $\ell^q \subseteq \ell^p$ is proper. The result follows.

(b) Let $f \in L^p([0, 1])$. We abuse notation here and also write f for a representative of this class. Note that $\frac{p}{q} > 1$ so that by Hölder’s inequality we have

$$\int_{[0, 1]} |f(x)|^q \, dx = \frac{\|f^q \cdot 1\|_1}{\|f\|_{\ell^p}^q} \leq \frac{\|f\|_{\ell^p}}{\|f\|_{\ell^p}^q} \left(\int_{[0, 1]} 1 \, dx \right)^{\frac{q}{p}}$$

$$= \|f\|_{\ell^p}^q \left(\int_{[0, 1]} 1 \, dx \right)^{\frac{q}{p}}$$

Hence, $f \in L^q([0, 1])$ with $\|f\|_q \leq \|f\|_p$.

To see that the inclusion is strict, one could use the fact that $\int_0^1 x^s \, dx$ is finite if and only if $s > -1$ and a similar argument as in part (a).

(c) To show that $L^q(\mathbb{R}) \nsubseteq L^p(\mathbb{R})$, we use part (b) to pick an $f \in L^q([0, 1])$ that is not in $L^p([0, 1])$. Note that then extending this function to \mathbb{R} by $f(x) = 0$ if $x \notin [0, 1]$, we have found a function in $L^q(\mathbb{R})$ that is not in $L^p(\mathbb{R})$.

To show that $L^p(\mathbb{R}) \nsubseteq L^q(\mathbb{R})$, we use part (a) to pick a sequence $x \in \ell^p$ with $x \notin \ell^q$. Then consider the function f given by $f(x) = 0$ when $x \in (-\infty, 1)$, and $f(x) = x_j$ whenever $x \in [j, j+1)$, i.e., $f = \sum_{j=1}^{\infty} x_j \chi_{[j,j+1)}$, where $\chi_{[j,j+1)}$ denotes the indicator function of the set $[j, j+1)$. Then

$$\int_{\mathbb{R}} |f(x)|^p \, dx = \sum_{j=1}^{\infty} |x_j|^p \int_{j}^{j+1} 1 \, dx = \|x\|_p^p < \infty.$$

so that $f \in L^p(\mathbb{R})$. Similarly we have $\int_{\mathbb{R}} |f(x)|^q \, dx = \|x\|_q^q = \infty$ and thus $f \notin L^q(\mathbb{R})$. The assertion follows.

Exercise 5: Uniform convexity of Lebesgue spaces.

Let $(X, \|\cdot\|)$ be a normed vector space. We say that X is uniformly convex if for every $0 < \varepsilon < 2$ there is a $\delta > 0$ such that for all $x, y \in X$ with $\|x\| = \|y\| = 1$ we have the implication

$$\|x + y\| > 2 - \delta \quad \Rightarrow \quad \|x - y\| < \varepsilon.$$

(a) Show that if there is a $p \in (1, \infty)$ such that

$$\left\| \frac{1}{2}(x + y) \right\|^p + \frac{1}{2} \left\| (x - y) \right\|^p \leq \frac{\|x\|^p}{2} + \frac{\|y\|^p}{2},$$

then X is uniformly convex.

(b) Let (S, \mathcal{A}, μ) be a measure space and let $p \in [2, \infty)$. Show that $L^p(S)$ is uniformly convex.
(Hint: First show that the inequality in (a) holds in \(\mathbb{R}\) for any \(p \in [2, \infty)\). For this you could show and use the inequalities
\[
(|a|^p + |b|^p)^{\frac{1}{p}} \leq (|a|^2 + |b|^2)^{\frac{1}{2}} \leq 2^{\frac{1}{2} - \frac{1}{p}}(|a|^p + |b|^p)^{\frac{1}{p}},
\]
valid for all \(a, b \in \mathbb{R}\).)

(c) Show that \(\ell^\infty\) is not uniformly convex.

Solution:

(a) Let \(\varepsilon \in (0, 2)\) and set \(\delta := 2 + (2^p - \varepsilon^p)^{\frac{1}{p}} > 0\). Then if \(x, y \in X\) with \(\|x\| = \|y\| = 1\) satisfy \(\|x + y\| > 2 - \delta\), we have
\[
1 = \frac{\|x\|^p}{2} + \frac{\|y\|^p}{2} \geq \frac{1}{2}(x + y)^p + \frac{1}{2}(x - y)^p > \frac{1}{2}(x - y)^p + \left(1 - \frac{\delta}{2}\right)^p.
\]
so that
\[
2^{-p}\|x - y\|^p < 1 - \left(1 - \frac{\delta}{2}\right)^p = 1 - 2^{-p}(2^p - \varepsilon^p) = 2^{-p}\varepsilon^p.
\]
Hence, \(\|x - y\| < \varepsilon\), as desired.

(b) First we prove the inequalities in the hint. Note that the first inequality is a special case of the inequality we proved in Exercise 4(a). The second inequality is a bit trickier, since a homogeneity argument yields the bound with constant \(2^{\frac{1}{2}}\) rather than with the constant \(2^{\frac{1}{2} - \frac{1}{p}}\). Instead, we prove this result using calculus.

Consider the function \(\phi : [0, \infty) \to [0, \infty), t \mapsto t^\frac{p}{2}\). Then
\[
\phi''(t) = \frac{P}{2}(\frac{P}{2} - 1)t^{\frac{P}{2} - 2} \geq 0
\]
for \(t > 0\), since \(\frac{P}{2} - 1 > 0\). Hence, the function \(\phi\) is convex and thus
\[
\left(\frac{|a|^2}{2} + \frac{|b|^2}{2}\right)^{\frac{p}{2}} = \phi(\frac{1}{2}|a|^2 + \frac{1}{2}|b|^2) \leq \frac{1}{2}\phi(|a|^2) + \frac{1}{2}\phi(|b|^2) = \frac{|a|^p}{2} + \frac{|b|^p}{2}.
\]
Raising this inequality to the power \(\frac{1}{p}\), the assertion follows.

Now, let \(x, y \in \mathbb{R}\). By subsequently applying the first inequality from the hint with \(a = \frac{x + y}{2}\), \(b = \frac{x - y}{2}\), evaluating the squares, and using (2), we obtain
\[
\left(\frac{1}{2}(x + y)^p + \frac{1}{2}(x - y)^p\right)^{\frac{p}{2}} \leq \left(\frac{1}{2}(x + y)^2 + \frac{1}{2}(x - y)^2\right)^{\frac{p}{2}} = \left(\frac{x^2}{2} + \frac{y^2}{2}\right)^{\frac{p}{2}} \leq \frac{|x|^p}{2} + \frac{|y|^p}{2},
\]
proving the desired inequality.

Let \(f, g \in L^p(S)\). Then by applying our scalar equality with \(x = f(s), y = g(s)\), we obtain
\[
\|\frac{1}{2}(f + g)\|_p^p + \|\frac{1}{2}(f - g)\|_p^p = \int_S \left(\frac{1}{2}|f(s) + g(s)|^p + \frac{1}{2}|f(s) - g(s)|^p\right) \, d\mu(s)
\]
\[
\leq \int_S \left(\frac{|f(s)|^p}{2} + \frac{|g(s)|^p}{2}\right) \, d\mu(s)
\]
\[
= \frac{\|f\|_p^p}{2} + \frac{\|g\|_p^p}{2}.
\]
Thus, by part (a), we conclude that $L^p(S)$ is uniformly convex.

(c) Set $\varepsilon = 1$ and let $\delta > 0$. Then choose $x = (1, 1, 0, 0, 0, \ldots)$, $y = (1, 0, 0, 0, \ldots)$. Note that $\|x\|_\infty = \|y\|_\infty = 1$ and moreover, $\|x + y\|_\infty = 2 > 2 - \delta$. However, $\|x - y\|_\infty = 1 \geq \varepsilon$. Thus, ℓ^∞ is not uniformly convex.