Exercise 1: Identifications of annihilators.
Let X be a normed space and let V be a subspace of X. Show that

(i) $(X/V)' \cong V^\perp$;

(ii) $V' \cong X'/V^\perp$.

Solution:

(i) Define $T : (X/V)' \to V^\perp$ by $T\phi(x) := \phi(\hat{x})$. Here \hat{x} denotes the class in X/V represented by $x \in X$. Note that T is linear. Moreover, $T\phi$ is a linear functional on X, as it is the composition of the (linear) quotient map $X \to X/V$ and the linear map $\phi : X/V \to K$.

We first check that we indeed have $T\phi \in V^\perp$ whenever $\phi \in (X/V)'$. Let $v \in V$. Then $\hat{v} = 0$ in X/V and hence $T\phi(v) = \phi(\hat{v}) = \phi(0) = 0$, proving that $T\phi$ indeed vanishes on V. Next, we check that it is bounded. Note that for all $x \in X$ we have

$$|T\phi(x)| = |\phi(\hat{x})| \leq \|\phi\| \|\hat{x}\| \leq \|\phi\| \|x\|$$

so that $T\phi$ is bounded with

$$\|T\phi\| \leq \|\phi\|. \quad (1)$$

Thus, $T\phi \in V^\perp$, and T is well-defined.

Next, we provide an inverse for T. Define $S : V^\perp \to (X/V)'$ by $S\psi(\hat{x}) := \psi(x)$. To see that this is well-defined, note that if $x, y \in X$ satisfy $\hat{x} = \hat{y}$, i.e., $x - y \in V$, then $\psi(x) - \psi(y) = \psi(x - y) = 0$, since $\psi \in V^\perp$, as desired. Moreover, note that for any $v \in V$ we have

$$|S\psi(\hat{x})| = |\psi(x)| = |\psi(x - v)| \leq \|\psi\| \|x - v\|.$$

Taking an infimum over $v \in V$ proves that $|S\psi(\hat{x})| \leq \|\psi\| \|\hat{x}\|$, proving that indeed $S\psi \in (X/V)'$, and moreover that

$$\|S\psi\| \leq \|\psi\|. \quad (2)$$

To see that S is an inverse for T, note that for any $\phi \in (X/V)'$ and $x \in X$ we have $S(T\phi)(\hat{x}) = T\phi(x) = \phi(\hat{x})$ so that $ST = \text{Id}$. Moreover, we have $T(S\psi)(x) = S\psi(\hat{x}) = \psi(x)$ so that $TS = \text{Id}$. We conclude that $S = T^{-1}$ and T is a linear isomorphism. It remains to show that T is an isometry.

Let $\phi \in (X/V)'$. From (2) it follows that $\|\phi\| = \|ST\phi\| \leq \|T\phi\|$. Combining this with (1) proves that $\|T\phi\| = \|\phi\|$, as desired. The assertion follows.
(ii) We define $T : V' \to X'/V^\perp$ as follows. Let $\phi \in V'$. Then by Hahn-Banach, there exists a $\psi \in X'$ such that $\psi(v) = \phi(v)$ for all $v \in V$ and $\|\psi\| = \|\phi\|$. Now set $T\phi := \hat{\psi}$, where $\hat{\psi}$ denotes the class in X'/V^\perp represented by ψ. To see that this is well-defined, we need to show that $T\phi$ does not depend on the particular extension chosen for ϕ. Indeed, suppose that $\psi_1, \psi_2 \in X'$ are both extensions of ϕ to X. Then for each $v \in V$ we have

$$ (\psi_1 - \psi_2)(v) = \psi_1(v) - \psi_2(v) = \phi(v) - \phi(v) = 0. $$

Hence, $\psi_1 - \psi_2 \in V^\perp$ and thus $\hat{\psi}_1 = \hat{\psi}_2$, as desired. Finally, note that we have

$$ \|T\phi\| = \|\hat{\psi}\| \leq \|\psi\| = \|\phi\|. \quad (3) $$

Next, we define $S : X'/V^\perp \to V'$ by $S\hat{\psi}(v) := \psi(v)$. To see that this is well defined, note that if $\psi_1 - \psi_2 \in V^\perp$, then for all $v \in V$ we have $\psi_1(v) - \psi_2(v) = (\psi_1 - \psi_2)(v) = 0$ so that $\psi_1(v) = \psi_2(v)$, as desired. Next, note that for any $\hat{\psi} \in V^\perp$ we have

$$ \|S\hat{\psi}\| = \|S(\hat{\psi} - \hat{\psi})\| = \sup_{v \in V \atop \|v\|=1} \|\psi(v) - \hat{\psi}(v)\| \leq \sup_{x \in X \atop \|x\|=1} \|\psi(x) - \hat{\psi}(x)\| = \|\psi - \hat{\psi}\|. $$

Taking an infimum over $\hat{\psi} \in V^\perp$ we conclude that

$$ \|S\hat{\psi}\| \leq \|\hat{\psi}\|. \quad (4) $$

Next we check that S is the inverse of T. Indeed, note that for any $\phi \in V'$ with extensions $\psi \in X'$, we have $S(T\phi)(v) = S\hat{\psi}(v) = \psi(v) = \phi(v)$ for all $v \in V$. Hence, $ST = \text{Id}$.

Furthermore, note that for $\psi \in X'$, we have that ψ is an extension of $S\hat{\psi} = \psi|_V$ to X. Thus, $T(S\hat{\psi}) = \hat{\psi}$, proving that $TS = \text{Id}$ and thus, that T is a linear isomorphism. Finally, as in (i), we deduce from (3) and (4) that T is an isometry. The assertion follows.

Exercise 2: Duality in sequence spaces.

For $j \in \mathbb{N}$ we denote by e_j the sequence which is 0 in every entry except for the j-th one, where it is equal to 1.

(a) Prove the following assertions:

(i) For each $x \in c_0$, we have $\sum_{j=1}^J x_j e_j \to x$ in c_0 as $J \to \infty$.

(ii) Let $p \in [1, \infty)$. For each $x \in \ell^p$, we have $\sum_{j=1}^J x_j e_j \to x$ in ℓ^p as $J \to \infty$.

(iii) There exists an $x \in \ell^\infty$ so that $\sum_{j=1}^J x_j e_j$ does not converge to x in ℓ^∞ as $J \to \infty$.

(b) Prove that we have the following identifications:

(i) $(c_0)' \cong \ell^1$;

(ii) for $p \in [1, \infty)$, $(\ell^p)' \cong \ell^{p'}$.

*Hint: use Exercise 3 of Exercise sheet 7."

(c) Show that there exists a functional $\phi \in (\ell^\infty)'$ such that for every convergent sequence $x = (x_j)_{j \in \mathbb{N}}$ we have $\phi(x) = \lim_{j \to \infty} x_j$. \(\textbf{Bonus:}\) prove or disprove that such a functional is unique.)
Furthermore, show that there is no \(y \in \ell^1 \) such that \(\phi(x) = \sum_{j=1}^{\infty} x_j y_j \) for all \(x \in \ell^\infty \).

Solution:

(a) For (i), let \(x \in c_0 \). Then

\[
\|x - \sum_{j=1}^{J} x_j e_j\|_\infty = \|(0, \ldots, 0, x_{J+1}, x_{J+2}, \ldots)\|_\infty = \sup_{j > J} |x_j| \to \sup_{j \to \infty} |x_j| = \lim_{j \to \infty} |x_j| = 0
\]
as \(J \to \infty \), as desired.

For (ii), let \(x \in \ell^p \). Then

\[
\|x - \sum_{j=1}^{J} x_j e_j\|_p = \left(\sum_{j=1}^{J} |x_j|^p \right)^{\frac{1}{p}} \to 0 \quad \text{as} \quad J \to \infty,
\]
as desired.

For (iii), we could take any \(x \in \ell^\infty \setminus c_0 \), since the solution to (i) shows that only sequences that converge to 0 satisfy the required convergence property. To give a concrete example, we let \(x := (1, 1, \ldots) \in \ell^\infty \). Then

\[
\|x - \sum_{j=1}^{J} x_j e_j\|_\infty = 1 \quad \text{for all} \quad J \in \mathbb{N}
\]
and thus \(\sum_{j=1}^{J} x_j e_j \) does not converge to \(x \).

(b) (i) We define \(T : \ell^1 \to (c_0)' \) as follows. For \(y \in \ell^1 \) we define

\[
Ty : c_0 \to \mathbb{K}, \quad Ty(x) := \sum_{j=1}^{\infty} x_j y_j.
\]

Then \(Ty \) is linear, and by Hölder’s inequality we have \(|Ty(x)| \leq \|x\| \|y\|_1 \) so that \(Ty \in (c_0)' \) with

\[
\|Ty\| \leq \|y\|_1. \tag{5}
\]

Thus, \(T \) is well-defined.

Next, we will find an inverse of \(T \). Define \(S : (c_0)' \to \ell^1 \) by \(S \phi := (\phi(e_j))_{j \in \mathbb{N}} \). We use Exercise 3 of Exercise sheet 7 to see that \(S \) is well-defined. We define \(y_j := \phi(e_j) \), and we need to check that \(y \in \ell^1 \). To this end let \(x \in c_0 \). Then by the first part of (a) we have \(\sum_{j=1}^{J} x_j e_j \to x \) in \(c_0 \) as \(J \to \infty \). Since \(\phi : c_0 \to \mathbb{K} \) is continuous, this implies that

\[
\lim_{J \to \infty} \sum_{j=1}^{J} x_j y_j = \lim_{J \to \infty} \sum_{j=1}^{J} x_j \phi(e_j) = \lim_{J \to \infty} \phi \left(\sum_{j=1}^{J} x_j e_j \right) = \phi(x). \tag{6}
\]

Thus, the series \(\sum_{j=1}^{\infty} x_j y_j \) converges for any \(x \in c_0 \). By part (a) of Exercise 3 of Exercise sheet 7 this implies that \(y \in \ell^1 \), as desired. Moreover, in (the solution to) this exercise it was shown that

\[
\|y\|_1 \leq \sup_{n \in \mathbb{N}} \sup_{x \in c_0, \|x\|_\infty = 1} \left| \sum_{j=1}^{n} x_j y_j \right| = \sup_{n \in \mathbb{N}} \sup_{x \in c_0, \|x\|_\infty = 1} |\phi\left(\sum_{j=1}^{n} x_j e_j \right)|
\]

\[
\leq \|\phi\| \sup_{n \in \mathbb{N}} \sup_{x \in c_0, \|x\|_\infty = 1} \max_{j \in \{1, \ldots, n\}} |x_j| = \|\phi\| \sup_{x \in c_0, \|x\|_\infty = 1} \|x\| = \|\phi\|.
\]
Hence,
\[\| S \phi \|_1 = \| y \|_1 \leq \| \phi \|. \]
(7)

Finally, note that \(S(Ty) = (Ty(e_j))_{j \in \mathbb{N}} = (y_j)_{j \in \mathbb{N}} = y \) so that \(ST = \text{Id} \). Moreover, it follows from (6) that
\[T(S\phi)(x) = \sum_{j=1}^{\infty} x_j \phi(e_j) = \phi(x) \]
for all \(x \in c_0 \) so that \(T(S\phi) = \phi \) and thus \(TS = \text{Id} \). We conclude that \(S = T^{-1} \) and \(T \) is a linear isomorphism. Moreover, it follows from (5) and (7) that \(T \) is an isometry. The assertion follows.

(ii) This result is completely analogous to the proof of (i), this time using the second part of (a), and part (b) of Exercise 3 of Exercise sheet 7.

(c) Denote by \(c \subseteq \ell^\infty \) the space of convergent sequences and define \(\psi : c \to \mathbb{K} \) by \(\psi(x) = \lim_{j \to \infty} x_j \). By the usual properties of limits, \(\psi \) is linear. Moreover, we have
\[|\psi(x)| = \lim_{j \to \infty} |x_j| \leq \sup_{j \in \mathbb{N}} |x_j| = \| x \|_\infty. \]
Thus, \(\psi \) is bounded and hence \(\phi \in c' \). Thus, by Hahn-Banach this map extends to a functional \(\phi \in (\ell^\infty)' \). Then for any convergent sequence \(x \) we have \(\phi(x) = \lim_{j \to \infty} x_j \) and thus, \(\phi \) satisfies the required property.

Suppose for a contradiction that there is a sequence \(y \in \ell^1 \) such that \(\phi(x) = \sum_{j=1}^{\infty} x_j y_j \) for all \(x \in \ell^\infty \). Note that for a fixed \(j \in \mathbb{N} \) the sequence \(e_j \) converges to 0. Hence,
\[y_j = \phi(e_j) = 0 \quad \text{for all } j \in \mathbb{N} \]
and thus \(y = 0 \) so that \(\phi = 0 \). Taking the sequence \(x = (1, 1, \ldots) \), we then find that \(0 = \phi(x) = 1 \), which is a contradiction. The assertion follows.

For the bonus problem, we will show that such a \(\phi \) is not unique. Consider the spaces \(c_+ \subseteq \ell^\infty \) of sequences \((x_j)_{j \in \mathbb{N}} \) with the property that the subsequence \((x_{2j})_{j \in \mathbb{N}} \) converges and the space \(c_- \subseteq \ell^\infty \) of sequences \((x_j)_{j \in \mathbb{N}} \) with the property that the subsequence \((x_{2j+1})_{j \in \mathbb{N}} \) converges. Respectively defining \(\psi_+ : c_+ \to \mathbb{K} \), \(\psi_-(x) := \lim_{j \to \infty} x_{2j} \), \(\psi_-(x) := \lim_{j \to \infty} x_{2j+1} \), we note as before that \(\| \psi_\pm (x) \| \leq \| x \|_\infty \) and thus, by Hahn-Banach these map have bounded extensions \(\phi_\pm \in (\ell^\infty)' \). Then certainly \(\phi_+ (x) = \lim_{j \to \infty} x_j \) whenever \(x = (x_j)_{j \in \mathbb{N}} \) is convergent, but for the sequence \(((-1)^j)_{j \in \mathbb{N}} \in \ell^\infty \) we have \(\phi_+(x) = 1 \), while \(\phi_-(x) = -1 \). Hence, \(\phi_+ \neq \phi_- \), and thus, a map with the property we are looking for is not uniquely determined.

Exercise 3: Projections and products.
Let \(X \) be a Banach space.

(a) Let \(P : X \to X \) be a linear map satisfying \(P^2 = P \). Show that the following are equivalent:

(i) \(P \) is bounded;

(ii) \(N(P) \) and \(R(P) \) are closed.

(Hint: for (ii)\(\Rightarrow \)(i), use the Closed Graph Theorem.)
(b) Suppose X decomposes as $X = X_1 \oplus X_2$ for closed subspaces $X_1, X_2 \subseteq X$. Show that there exists a continuous linear isomorphism between X and $X_1 \times X_2$ with a continuous inverse. Here we equip the cartesian product $X_1 \times X_2$ with the norm $\|(x_1, x_2)\| := \|x_1\| + \|x_2\|$.

Solution:

(a) For (i)⇒(ii), note that $N(P) = P^{-1}(\{0\})$ is closed, since P is continuous. Moreover, since $P^2 = P$, we find that $R(P) = \{x \in X : Px = x\} = (\text{Id} - P)^{-1}(\{0\})$, which is also closed, since $\text{Id} - P$ is also continuous.

For (ii)⇒(i) we use the Closed Graph Theorem. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X such that for $x, y \in X$ we have $x_n \to x$ and $Px_n \to y$ as $n \to \infty$. To conclude that P is bounded, it now suffices to show that $Px = y$.

Since $R(P)$ is closed and $(Px_n)_{n \in \mathbb{N}}$ is a sequence in $R(P)$, its limit y also lies in $R(P)$. Thus, we have $P_y = y$. Moreover, since $N(P)$ is closed and $(x_n - Px_n)_{n \in \mathbb{N}}$ lies in $N(P)$ (we have $P(x_n - Px_n) = Px_n - P^2x_n = Px_n - Px_n = 0$), its limit $x - y$ also lies in $N(P)$. Combining these facts, we conclude that, $0 = P(x - y) = Px - Py = Px - y$ and thus $Px = y$, as desired.

(b) We define $T : X_1 \times X_2 \to X$ by $T(x_1, x_2) = x_1 + x_2$. Then T is surjective as $X = X_1 \oplus X_2$ and T is injective as the only way to write $x_1 + x_2 = 0$ for $x_1 \in X_1, x_2 \in X_2$ is when $x_1 = 0$ and $x_2 = 0$. Moreover, T is continuous, since

$$\|T(x_1, x_2)\| = \|x_1 + x_2\| \leq \|x_1\| + \|x_2\| = \|(x_1, x_2)\|$$

by the triangle inequality.

We can now conclude the result in at least two different ways. One way is to use the Open Mapping Theorem to conclude that the inverse of T is also continuous, proving the desired result.

Alternatively, we could use part (a) of this exercise. By Exercise 6 of Exercise sheet 4, the maps $P_1 x = x_1$ and $P_2 x = x_2$, where $x = x_1 + x_2$ is the unique decomposition of x with $x_1 \in X_1$ and $x_2 \in X_2$, are the unique projections satisfying $R(P_1) = N(P_2) = X_1$, $N(P_1) = R(P_2) = X_2$. By (a) these maps are continuous. Noting that for $x \in X$ we have $T^{-1}x = (P_1 x, P_2 x)$, we find that

$$\|T^{-1}x\| = \|(P_1 x, P_2 x)\| = \|P_1 x\| + \|P_2 x\| \leq (\|P_1\| + \|P_2\|)\|x\|,$$

proving that T^{-1} is continuous. The assertion follows.

We point out that in particular we have shown that the norms $\|x_1\| + \|x_2\|$ and $\|x_1 + x_2\|$ are equivalent norms on X.

Exercise 4: A bounded operator.
Let X be a normed space and let $(x_j)_{j \in \mathbb{N}}$ be a sequence in X. Let $p \in [1, \infty]$ and suppose that for each $\phi \in X'$ we have $(\phi(x_j))_{j \in \mathbb{N}} \in \ell^p$. Prove that $T : X' \to \ell^p$, $T\phi := (\phi(x_j))_{j \in \mathbb{N}}$ is a bounded operator.

(Hint: use the Closed Graph Theorem.)
Solution: Since X' and ℓ^p are Banach spaces we may use the Closed Graph Theorem to prove that T is bounded. Suppose $(\phi_n)_{n \in \mathbb{N}}$ is a sequence in X' such that for $\phi \in X'$, $y \in \ell^p$ we have $\phi_n \to \phi$ in X' and $T\phi_n \to y$ in ℓ^p as $n \to \infty$. It remains to show that $T\phi = y$.

Fix a $j \in \mathbb{N}$. Then we have

$$|\phi_n(x_j) - y_j| \leq \|T\phi_n - y\|_\infty \leq \|T\phi_n - y\|_p \to 0 \quad \text{as } n \to \infty$$

so that $\lim_{n \to \infty} \phi_n(x_j) = y_j$ in \mathbb{K}. But since $\phi_n \to \phi$ in X', we also have

$$|\phi_n(x_j) - \phi(x_j)| = |(\phi_n - \phi)(x_j)| \leq \|\phi_n - \phi\||x_j| \to 0 \quad \text{as } n \to \infty$$

so that $\lim_{n \to \infty} \phi_n(x_j) = \phi(x_j)$ in \mathbb{K}. By uniqueness of limits, we conclude that $\phi(x_j) = y_j$.
But then $T\phi = (\phi(x_j))_{j \in \mathbb{N}} = (y_j)_{j \in \mathbb{N}} = y$, proving the desired result.