Aufgabe 7

a) Auf \(\mathbb{R}^2 \) definieren wir die Abbildung \(d: \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R} \) durch

\[
d(x, y) := \begin{cases}
|x - y|, & \text{falls } x = \lambda y \text{ für ein } \lambda \in \mathbb{R}, \\
|x| + |y|, & \text{sonst},
\end{cases}
\]

wobei \(|\cdot| \) die euklidische Norm in \(\mathbb{R}^2 \) bezeichne. Zeigen Sie, dass \(d \) eine Metrik auf \(\mathbb{R}^2 \) definiert und skizzieren Sie die Mengen

\[
M_1 := \{ x \in \mathbb{R}^2 : d(x, (0, 0)) = 1 \}, \quad M_2 := \{ x \in \mathbb{R}^2 : d(x, (1, 1)) = 1 \}, \\
M_3 := \{ x \in \mathbb{R}^2 : d(x, (1, 1)) = 2 \}.
\]

b) Sei \(X \) ein Vektorraum über \(\mathbb{K} \) und \(p_j, j \in \mathbb{N} \), Halbnormen auf \(X \) mit der Eigenschaft, dass für jedes \(x \in X \setminus \{0\} \) ein \(k \in \mathbb{N} \) existiere mit \(p_k(x) > 0 \). Zeigen Sie, dass dann

\[
d(x, y) := \sum_{j=1}^{\infty} 2^{-j} \frac{p_j(x-y)}{1 + p_j(x-y)}, \quad x, y \in X,
\]

eine Metrik auf \(X \) definiert. Zeigen Sie außerdem, dass eine Folge \((x_n)_{n \geq 1} \subseteq X \) genau dann gegen ein \(x \in X \) bezüglich \(d \) konvergiert, falls \(\lim_{n \to \infty} p_j(x_n - x) = 0 \) für alle \(j \in \mathbb{N} \).

Lösungsvorschlag: a) Seien \(x, y, z \in \mathbb{R}^2 \).

1) Positive Definitheit: Offensichtlich ist \(d(x, y) \geq 0 \) und \(d(x, x) = 0 \). Ist außerdem \(x \neq y \), so folgt in jedem Fall \(d(x, y) > 0 \), woraus die Definitheit von \(d \) folgt.

2) Symmetrie: Da \(|x - y| = |y - x| \) und \(|x| + |y| = |y| + |x| \), gilt auch \(d(x, y) = d(y, x) \).

3) Dreiecksungleichung: Fall 1: Es existiert ein \(\lambda \in \mathbb{R} \) mit \(x = \lambda y \).

Fall 1.1: Es existiert ein \(\mu \in \mathbb{R} \) mit \(x = \mu z \). Ist \(\mu = 0 \), so ist \(x = 0 \) und es gilt

\[
d(x, y) = |y| \leq \begin{cases}
|z| + |z - y|, & \text{falls } z = \nu y \text{ für ein } \nu \in \mathbb{R}, \\
|z| + |z + |y|, & \text{sonst},
\end{cases}
= d(x, z) + d(z, y).
\]

Ist \(\mu \neq 0 \), so folgt \(z = \frac{\lambda}{\mu} y \) und damit

\[
d(x, y) = |x - y| \leq |x - z| + |z - y| = d(x, z) + d(z, y).
\]

Fall 1.2 Es existiert kein \(\mu \in \mathbb{R} \) mit \(x = \mu z \). Dann existiert auch kein \(\nu \in \mathbb{R} \) mit \(y = \nu z \). Damit folgt

\[
d(x, y) = |x - y| \leq |x| + |y| \leq |x| + |z| + |z| + |y| = d(x, z) + d(z, y).
\]

Fall 2: Es existiert kein \(\lambda \in \mathbb{R} \) mit \(x = \lambda y \).

Fall 2.1: Es existiert ein \(\mu \in \mathbb{R} \) mit \(x = \mu z \). Dann existiert auch kein \(\nu \in \mathbb{R} \) mit \(y = \nu z \). Daher erhalten wir

\[
d(x, y) = |x| + |y| = |x - z + z| + |y| \leq |x - z| + |z| + |y| = d(x, z) + d(z, y).
\]
Fall 2.2: Es existiert kein $\mu \in \mathbb{R}$ mit $x = \mu z$, aber es existiert ein $\nu \in \mathbb{R}$ mit $y = \nu z$. Dann gilt
\[
d(x, y) = |x| + |y| = |x| + |z + y - z| \leq |x| + |z| + |y - z| = d(x, z) + d(z, y).
\]
Fall 2.3: Es existiert kein $\mu \in \mathbb{R}$ mit $x = \mu z$ und kein $\nu \in \mathbb{R}$ mit $y = \nu z$. Hier erhalten wir
\[
d(x, y) = |x| + |y| \leq |x| + |z| + |z| + |y| = d(x, z) + d(z, y).
\]
Also ist d eine Metrik auf \mathbb{R}^2. Betrachten wir schließlich noch die Mengen M_1, M_2 und M_3. Für M_1 erhalten wir
\[
d(x, (0, 0)) = 1 \iff |x| = 1,
\]
bzw. $M_1 = \{x \in \mathbb{R}^2: |x| = 1\}$. D.h. der Einheitskreis bezüglich d ist gerade der Einheitskreis in \mathbb{R}^2.

Ist $x \in M_2$ und $x = \lambda(1, 1) = (\lambda, \lambda)$ für ein $\lambda \in \mathbb{R}$, so gilt
\[
d(x, (1, 1)) = |(\lambda - 1, \lambda - 1)| = 1 \iff \lambda^2 - 2\lambda + \frac{1}{2} = 0 \iff \lambda = 1 \pm \frac{1}{2}\sqrt{2}.
\]
Ist $x \neq (\lambda, \lambda)$ für ein $\lambda \in \mathbb{R}$, so folgt
\[
d(x, (1, 1)) = |(1, 1)| + |x| = 1 \iff |x| = 1 - \sqrt{2} < 0,
\]
was nicht möglich ist. Daher ist $M_2 = \{(1 - \frac{1}{2}\sqrt{2}, 1 - \frac{1}{2}\sqrt{2}), (1 + \frac{1}{2}\sqrt{2}, 1 + \frac{1}{2}\sqrt{2})\}$.

Für M_3 betrachten wir wieder zunächst $x \in \mathbb{R}^2$ mit $x = (\lambda, \lambda)$ für ein $\lambda \in \mathbb{R}$. Dann erhalten wir ähnlich wie bei M_2
\[
d(x, (1, 1)) = |(\lambda - 1, \lambda - 1)| = 2 \iff \lambda = 1 \pm \sqrt{2}.
\]
Für den Fall $x \neq (\lambda, \lambda)$ für ein $\lambda \in \mathbb{R}$ erhalten wir
\[
d(x, (1, 1)) = |(1, 1)| + |x| = 2 \iff |x| = 2 - \sqrt{2} > 0.
\]
Hier müssen wir allerdings diejenigen Punkte ausschließen, für die ein $\lambda \in \mathbb{R}$ existiert mit $|(\lambda, \lambda)| = 2 - \sqrt{2}$, d.h. $\lambda = \pm (\sqrt{2} - 1)$. Für M_3 erhalten wir also
\[
M_3 = \{x \in \mathbb{R}^2: |x| = 2 - \sqrt{2}\} \setminus \{(-1, 1), (\sqrt{2} - 1, \sqrt{2} - 1), (1 + \sqrt{2}, 1 + \sqrt{2})\}.
\]
b) Wir definieren die Funktion $\varphi(t) := \frac{t}{1+t}$ für $t \geq 0$. Dann ist $\varphi(t) \in [0,1)$ und in t strikt monoton wachsend, da $\varphi'(t) = \frac{1}{(1+t)^2} > 0$.

1) Positive Definitheit: Mit obiger Bemerkung erhalten wir für $x, y \in X$

$$0 \leq d(x, y) = \sum_{j=1}^{\infty} 2^{-j} \frac{p_j(x-y)}{1+p_j(x-y)} \leq \sum_{j=1}^{\infty} 2^{-j} = 1.$$
Insbesondere konvergiert die Reihe für alle $x, y \in X$, d.h. $d: X \times X \to [0, \infty)$ ist wohldefiniert. Sei nun $x = y$. Dann ist $p_j(x-y) = 0$ für alle $j \in \mathbb{N}$, also $d(x,y) = 0$. Ist umgekehrt $d(x,y) = 0$, so ist $p_j(x-y) = 0$ für alle $j \in \mathbb{N}$ und damit $x = y$ nach Voraussetzung an die Halbnormen.

2) Symmetrie: Da $p_j(x - y) = p_j(y - x)$ für alle $j \in \mathbb{N}$, folgt direkt $d(x,y) = d(y,x)$ für $x, y \in X$.

3) Dreiecksungleichung: Da φ strikt monoton wachsend ist, erhalten wir für $j \in \mathbb{N}$ und $x, y, z \in X$

$$\frac{p_j(x-y)}{1 + p_j(x-y)} = \varphi(p_j(x-y)) \leq \varphi(p_j(x-z) + p_j(z-y)) = \frac{p_j(x-z) + p_j(z-y)}{1 + p_j(x-z) + p_j(z-y)} \leq \frac{p_j(x-z)}{1 + p_j(x-z)} + \frac{p_j(z-y)}{1 + p_j(z-y)}.$$
Damit folgt aber

$$d(x,y) = \sum_{j=1}^{\infty} 2^{-j} \frac{p_j(x-y)}{1 + p_j(x-y)} \leq \sum_{j=1}^{\infty} 2^{-j} \left(\frac{p_j(x-z)}{1 + p_j(x-z)} + \frac{p_j(z-y)}{1 + p_j(z-y)} \right) = d(x,z) + d(z,y).$$
Also ist d eine Metrik auf X. Kommen wir schließlich zur Äquivalenz der Konvergenzen. Sei $\lim_{n \to \infty} d(x_n, x) = 0$ und $j \in \mathbb{N}$ fixiert. Dann existiert zu jedem $\varepsilon > 0$ ein $N_\varepsilon \in \mathbb{N}$ mit

$$2^{-j} \frac{p_j(x_n - x)}{1 + p_j(x_n - x)} \leq d(x_n, x) \leq \varepsilon \text{ für } n \geq N_\varepsilon.$$
Wähle nun $\bar{\varepsilon} \in (0, \frac{1}{2})$ und $\varepsilon := 2^{-j}\bar{\varepsilon} > 0$. Dann existiert ein $N_{\varepsilon,j} \in \mathbb{N}$, sodass

$$p_j(x_n - x) \leq \bar{\varepsilon}(1 + p_j(x_n - x)) \leq \bar{\varepsilon} + \frac{1}{2} p_j(x_n - x) \text{ für } n \geq N_{\varepsilon,j}.$$
Damit folgt aber gerade, dass $p_j(x_n - x) \leq 2\bar{\varepsilon}$ für $n \geq N_{\varepsilon,j}$.

Sei umgekehrt $\lim_{n \to \infty} p_j(x_n - x) = 0$ für alle $j \in \mathbb{N}$ und $\varepsilon > 0$ beliebig. Dann existiert ein $N_\varepsilon \in \mathbb{N}$ mit $\sum_{j \geq N_\varepsilon} 2^{-j} \leq \varepsilon$, und zu N_ε ein $n_\varepsilon \in \mathbb{N}$, sodass

$$p_j(x_n - x) \leq \varepsilon \text{ für } n \geq n_\varepsilon \text{ und } j \in \{1, \ldots, N_\varepsilon\}.$$
Dann gilt aber gerade für $n \geq n_\varepsilon$

$$d(x_n, x) \leq \sum_{j=1}^{N_\varepsilon} 2^{-j} \frac{p_j(x_n - x)}{1 + p_j(x_n - x)} + \sum_{j \geq N_\varepsilon + 1} 2^{-j} \leq \sum_{j=1}^{N_\varepsilon} 2^{-j}\varepsilon + \varepsilon \leq 2\varepsilon.$$
Aufgabe 9 Sei X ein normierter Vektorraum über \mathbb{K} und $x': X \to \mathbb{K}$ linear. Zeigen Sie, dass der Kern von x' entweder abgeschlossen oder dicht in X ist.

Lösungsvorschlag: 1. Fall: x' ist stetig. Da $\{0\}$ abgeschlossen in \mathbb{K} ist, ist auch $\text{Kern } x' = x'^{-1}(\{0\})$ abgeschlossen in X nach Proposition 4.13.

2. Fall: x' ist nicht stetig. Insbesondere ist dann $x' \neq 0$. Dann existieren $(x_n)_{n \geq 1} \subseteq X$ und eine Folge $(a_n)_{n \geq 1} \subseteq \mathbb{K}$, sodass $x_n \to 0$ und $x'(x_n) = a_n \to 0$ für $n \to \infty$. Sei ohne Einschränkung $a_n \neq 0$ für alle $n \in \mathbb{N}$. Setze dann $y_n := \frac{1}{a_n}x_n$, $n \in \mathbb{N}$. Dann erhalten wir eine Folge $(y_n)_{n \geq 1} \subseteq X$ mit
\[
\lim_{n \to \infty} y_n = 0 \quad \text{und} \quad x'(y_n) = \frac{1}{a_n}x'(x_n) = 1 \quad \forall \ n \in \mathbb{N}.
\]
Für $z \in X$ beliebig setzen wir schließlich $z_n := z - x'(z)y_n$, $n \in \mathbb{N}$. Dann gilt
\[
\lim_{n \to \infty} z_n = z \quad \text{und} \quad x'(z_n) = x'(z) - x'(z)x'(y_n) = 0,
\]
also ist $(z_n)_{n \geq 1} \subseteq \text{Kern } x'$ und somit $\overline{\text{Kern } x'} = X$.

4