Def. \(P : \mathbb{W} \to \mathbb{W} \) linear mit \(P^2 = P \) heißt {\text{Projektion}}

Satz. \(P \) Projektion, \(Q := I - P \), \(M = \{ v \in \mathbb{W} : P v = v \} \)

(1) \(Q^2 = Q \)
(2) \(\text{Bild } P = M \)
(3) \(\text{Kern } P = \text{Bild } Q \)
(4) \(\mathbb{W} = \text{Bild } P \oplus \text{Kern } P \)

Satz. \(U_1, U_2 \text{ WR, } \mathbb{W} = U_1 \oplus U_2 \), also \(\omega = u_1 + u_2 \) ein-

denig mit \(\omega = e \), \(u_1, u_2 \in U_2 \)

\(\implies P \omega = u_1 \) ist Projektion von \(\mathbb{W} \) auf \(U_1 \) längs \(U_2 \)

Satz. \(\sum_{j=1}^n \langle b_n, \cdots, b_0 \rangle \) Orth von \(U \), \(P \omega = \sum_{j=1}^n \langle b_j, \omega \rangle b_j \)

\(\implies P \) Projektion von \(\mathbb{W} \) auf \(U \) längs \(U_2 \)

Zudem \(\| w - P w \| \leq \| w - u \| \) für jede \(w \) und alle \(u \in U \).

Satz. \(S = \{ u_1, u_2, \ldots \} \) abstr. unendliche Basis in \(\mathbb{W} \), \(S_n(\omega) = \sum_{k=1}^n \langle v_k, \omega \rangle v_k \)

(1) \((\langle v_k, \omega \rangle) \) konv. \(L^2 \), \(\sum_{k=1}^n | \langle v_k, \omega \rangle |^2 \leq \| \omega \| L^2 \) (Bessel)

(2) \(\| \omega - S_n(\omega) \| \to 0 \) \((n \to \infty) \) \(\iff \sum_{k=1}^n | \langle v_k, \omega \rangle |^2 = \| \omega \| L^2 \)

Def. \(S \) {\text{vollständig}} \(\iff \| \omega - S_n(\omega) \| \to 0 \) \((n \to \infty) \) \(\forall \omega \in \mathbb{W} \)

Folgerung. \(S \) vollständig \(\iff \sum_{k=1}^n | \langle v_k, \omega \rangle |^2 = \| \omega \| L^2 \) \(\forall \omega \in \mathbb{W} \)

Def. \(f : [-\pi, \pi] \to \mathbb{C} \), \(\hat{f}(w) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-iwx} \, dx \) \((k \in \mathbb{Z}) \)

\(\text{Fourier-Koeffizient von } f \)

\(a_k(f) = c_k(f) + c_{-k}(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) \, dx \) \((k \neq 0) \)

\(b_k(f) = i(c_k(f) - c_{-k}(f)) = i \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \, dx \)

reelle Fourier-Approx. \(c_k(f) = \frac{a_k(f) + ib_k(f)}{2}, c_{-k} = \frac{a_k(f) - ib_k(f)}{2} \)

Satz. \(f : \mathbb{R} \to \mathbb{C} \) 2\(\pi \)-per., stetig auf \(\mathbb{R} \), also \(f \in \mathbb{L}^2 \)

\[\sum_{w=-\infty}^{\infty} | \hat{f}(w) | ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} | f(x) | ^2 \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} | f(x) | ^2 \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} | f(x) | ^2 \, dx \]

Satz : \(f \in \mathbb{C} \text{per} \left([-\pi, \pi] \right) \)

(1) \(| \sum_{w \in \mathbb{Z}} \hat{f}(w) e^{iwx} | ^2 = f(x) \rightarrow f(x) \) stetig in \(x \)

(2) \(\| f - \sum_{w \in \mathbb{Z}} \hat{f}(w) e^{iwx} \| \xrightarrow{\text{w \to \infty}} 0 \).