Nichtlineare Evolutionsgleichungen

10. Übungsblatt

Problem 1
Let \(m = 3 \) and \(\phi = (\phi_1, \phi_2) \in C^3(\mathbb{R}^2, \mathbb{R}^2) \) with \(\phi(0) = 0 \).

For \(u : \mathbb{R}^3 \to \mathbb{C} \) set \(F(u) = \phi_1(\bar{u}, 3u) + i\phi_2(\bar{u}, 3u) =: \phi(u) \). Show that \(F : H^2(\mathbb{R}^3) \to H^2(\mathbb{R}^3) \) is Lipschitz on bounded subsets of \(X = H^2(\mathbb{R}^3) \). Solve the nonlinear Schrödinger equation
\[
u'(t) = i\Delta u(t) + iF(u(t)), \quad t \geq 0, \quad u(0) = u_0,
\]
on \(X \) using the results of the first chapter of the lectures. Compare with Theorem 4.16 of the lectures (or Theorem 12.6 in the Internet Seminar Lecture Notes).

Problem 2
Let \(m \leq 5 \), \(\alpha \in (2, \alpha_c) \) and \(\mu \in \{-1, 1\} \). Set \(\phi(z) = z|z|^{\alpha - 1} \) for \(z \in \mathbb{R}^2 \). For \(b > 0 \) we write
\[
Z_1(b) = L^\infty([-b, b], H^1(\mathbb{R}^m)) \cap L^p([-b, b], W^{1,q}(\mathbb{R}^m))
\]
and
\[
\|u\|_{1,b} = \max \left\{ \|u\|_{L^\infty([-b, b], H^1(\mathbb{R}^m))}, \|u\|_{L^p([-b, b], W^{1,q}(\mathbb{R}^m))} \right\}, \quad u \in Z_1(b).
\]
We furthermore put \(F(u) = -i\mu|u|^{\alpha - 1}u \) for \(u \in Z_1(b) \).

(a) Show that \(\phi \in C^2(\mathbb{R}^2, \mathbb{R}^2) \) with \(\|\phi''(z)\| \leq c_0|z|^{\alpha - 2} \) for all \(z \in \mathbb{R}^2 \) and some constant \(c_0 > 0 \).

(b) Let \(b > 0 \) and \(u, v \in Z_1(b) \) with \(\|u\|_{1,b}, \|v\|_{1,b} \leq r \) for some \(r > 0 \). Let \(q = 1 + \alpha \) and \(\frac{q}{p} + \frac{\alpha}{q} = \frac{p}{2} \). Show that
\[
\|F(u) - F(v)\|_{L^p([-b, b], W^{1,q}(\mathbb{R}^m))} \leq c_\alpha b^{\frac{1}{q} - \frac{1}{p}} \|u - v\|_{1,b}
\]
for some constant \(c > 0 \) only depending on \(c_0, \alpha \) and \(m \).

(c) Let \(u_0 \in H^1(\mathbb{R}^m) \) and consider the nonlinear Schrödinger equation
\begin{equation}
u'(t) = i\Delta u(t) - i\mu|u|^{\alpha - 1}u, \quad t \in J, \quad u(0) = u_0.
\end{equation}
Show that there is a radius \(\delta > 0 \) and a time \(b_0 > 0 \) such that \([-b_0, b_0] \subseteq J(u_0) \) for all \(v_0 \in \overline{B}_{H^1}(u_0, \delta) \) and \(\overline{B}_{H^1}(u_0, \delta) \to Z_1(b_0) \), \(v_0 \mapsto u(\cdot ; v_0) \),
is Lipschitz continuous, where \(u(\cdot ; v_0) \) is solution to (1) with initial value \(v_0 \) on its maximal interval of existence \(J(v_0) \).

Problem 3
Let \(V, \Gamma \in W^{1,\infty}(\mathbb{R}^m) \) be real valued. Set \(F_1(u) = -iV u \) and \(F_2(u) = -i\Gamma u |u|^{\alpha - 1} \) for \(u \in H^1(\mathbb{R}^m) \), as well as \(F = F_1 + F_2 \). Let \(\rho > 0 \) and \(u_0 \in H^1(\mathbb{R}^m) \) with \(\|v_0\|_{1,2} \leq \rho \).
Show that there is a time \(b_0 > 0 \) such that the nonlinear Schrödinger equation
\[
u'(t) = i\Delta u(t) + F(u(t)), \quad t \in [-b_0, b_0], \quad u(0) = u_0,
\]
has an \(H^1 \)-solution.

Hint: One can use Theorem 4.10 of the lectures (or Theorem 11.6 from the Internet Seminar Lecture Notes) with \((p, q) = (\infty, 2) \).