Webrelaunch 2020

Partial Differential Equations (Wintersemester 2006/07)

Termine
Vorlesung: Montag 11:30-13:00 Neuer Hörsaal
Donnerstag 11:30-13:00 HS 102 (10.50)
Übung: Donnerstag 15:45-17:15 HS 102 (10.50)

We give an introduction to the large field of partial differential equations. In particular we shall study:

  • the method of characteristics
  • the Cauchy-Kowalewska-Theorem
  • the maximum principle
  • the Dirichlet problem
  • elliptic equations
  • the heat equation
  • parabolic equations
  • the wave equation

Übungsblätter

Literaturhinweise

  • F. John: Partial Differential Equations; Springer, New York, Heidelberg, 4. Aufl., 1991.
  • M. Renardy, R.C. Rogers: An introduction to partial differential equations, 2nd edition, Texts in Applied Mathematics, 13. Springer-Verlag, New York, 2004.
  • L.C. Evans: Partial differential equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 1998.
  • D. Henry: Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer-Verlag 1981.
  • A. Friedman: Partial differential equations of parabolic type, Prentice-Hall, 1964.
  • J. Jost: Partial differential equations, Graduate Studies in Mathematics 214, Springer-Verlag, 2002.
  • J. Wloka: Partial differential equations, Cambridge University Press, 1987.
  • D. Gilbarg, N. Trudinger: Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften 224, Springer-Verlag, 1983.