Partial Differential Equations (Wintersemester 2006/07)
- Dozent*in: apl. Prof. Dr. Peer Christian Kunstmann
- Veranstaltungen: Vorlesung (1058), Übung (1059)
- Semesterwochenstunden: 4+2
- Hörerkreis: Mathematik, Informatik, Physik (ab 5. Semester)
Termine | ||
---|---|---|
Vorlesung: | Montag 11:30-13:00 | Neuer Hörsaal |
Donnerstag 11:30-13:00 | HS 102 (10.50) | |
Übung: | Donnerstag 15:45-17:15 | HS 102 (10.50) |
We give an introduction to the large field of partial differential equations. In particular we shall study:
- the method of characteristics
- the Cauchy-Kowalewska-Theorem
- the maximum principle
- the Dirichlet problem
- elliptic equations
- the heat equation
- parabolic equations
- the wave equation
Übungsblätter
Literaturhinweise
- F. John: Partial Differential Equations; Springer, New York, Heidelberg, 4. Aufl., 1991.
- M. Renardy, R.C. Rogers: An introduction to partial differential equations, 2nd edition, Texts in Applied Mathematics, 13. Springer-Verlag, New York, 2004.
- L.C. Evans: Partial differential equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 1998.
- D. Henry: Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer-Verlag 1981.
- A. Friedman: Partial differential equations of parabolic type, Prentice-Hall, 1964.
- J. Jost: Partial differential equations, Graduate Studies in Mathematics 214, Springer-Verlag, 2002.
- J. Wloka: Partial differential equations, Cambridge University Press, 1987.
- D. Gilbarg, N. Trudinger: Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften 224, Springer-Verlag, 1983.