University of Karlsruhe Institute for Analysis HDoz. Dr. P. Kunstmann Dipl.-Math. M. Muzzulini

8^{th} exercise sheet PARTIAL DIFFERENTIAL EQUATIONS WS 2006/07

29. Show that the integral kernel of the poisson representation formlua

$$x \mapsto \frac{R^2 - |x|^2}{n\omega_n R} |x - y|^{-n}$$

is harmonic in B(0, R) for fixed $y \in \partial B(0, R)$.

30. Let u harmonic on a convex set $\Omega \subset \mathbb{R}^2$. Show that there exists a conjugate harmonic function $v : \Omega \to \mathbb{R}$ such that the Cauchy-Riemann equations

$$u_x = v_y \qquad u_y = -v_x$$

are satisfied Hint: for fixed $(x_0, y_0) \in \Omega$ define v by

$$v(x,y) = \int_{\gamma} u_x \, dy - u_y \, dx,$$

where $\gamma(a) = (x_0, y_0)$ and $\gamma(b) = (x, y)$.

Let $M := \{x + iy : (x, y) \in \Omega\}$. What do we know about about f, which is defined by $f : M \to \mathbb{C}, \quad f(x + iy) := u(x, y) + iv(x, y).$

31. Let P(x, y) := xy and $\eta \in C_c^{\infty}$ with $\eta(x) = 1$ for $|x| \le 1$ and $\eta(x) = 0$ for $|x| \ge 2$. We set $v := \Delta(\eta P)$ and

$$f(x) := \sum_{k=1}^{\infty} k^{-1} v(2^k x)$$

Show that f is continuos on B(0,2), but $\Delta u = f$ has no C^2 solution in any neighbourhood of the origin.

32. a) For n = 2 we define the function

$$V(x,y) = \frac{1}{8\pi}r^2\log r, \quad r = |x-y|.$$

Calculate $\Delta V(x, \cdot)$ and $\Delta^2 V(x, \cdot)$ for $y \neq x$.

b) Let $\Omega \subset \mathbb{R}^n$ with smooth boundary and $u \in C^2(\overline{\Omega})$. Show that for fixed $x \in \Omega$ holds Greens representation formula for Δ^2

$$u(x) = \int_{\Omega} V \Delta^2 u \, dy - \int_{\partial \Omega} \left(V \frac{\partial \Delta u}{\partial \nu_y} - \Delta u \frac{\partial V}{\partial \nu_y} + \Delta V \frac{\partial u}{\partial \nu_y} - \frac{\partial \Delta V}{\partial \nu_y} \right) d\sigma(y).$$

Hint: Apply Greens formula (equation (3) of the lecture) with u replaced by Δu and use Greens representation formula for Δ .