Perturbation properties of some classes of operators

C. SCHMOEGER

RIASSUNTO: Sia X uno spazio di Banach complesso e $\mathcal{L}(X)$ l’algebra di di Banach di tutti gli operatori lineari limitati in X. Considerate le seguenti famiglie di operatori:

$$D(X) = \{ T \in \mathcal{L}(X) : T(X) \text{ is closed and } N(T) \subseteq \bigcap_{n=1}^{\infty} T^n(X) \},$$

$$S(X) = \{ T \in D(X) : T \text{ is relatively regular} \}.$$

si determinano i punti interni di $D(X)$ e $S(X)$, si dimostrano inoltre alcuni teoremi di perturbazione.

ABSTRACT: Let X be a complex Banach space and $\mathcal{L}(X)$ the Banach algebra of all bounded linear operators on X. We consider the following classes of operators:

$$D(X) = \{ T \in \mathcal{L}(X) : T(X) \text{ is closed and } N(T) \subseteq \bigcap_{n=1}^{\infty} T^n(X) \},$$

$$S(X) = \{ T \in D(X) : T \text{ is relatively regular} \}.$$

We determine the interior points of $D(X)$ and $S(X)$ and prove some perturbation theorems.

1 – Introduction and terminology

Throughout this paper X denotes a Banach space over the complex
field \(\mathbb{C} \) and \(\mathcal{L}(X) \) the Banach algebra of all bounded linear operators on \(X \). If \(T \in \mathcal{L}(X) \) we denote by \(N(T) \) the kernel of \(T \) and by \(\alpha(T) \) the dimension of \(N(T) \). The range of \(T \) is denoted by \(T(X) \) and we define \(\beta(T) = \text{codim } T(X) \).

\(T \in \mathcal{L}(X) \) is called relatively regular if \(TST = T \) for some \(S \in \mathcal{L}(X) \). \(\mathcal{R}(X) \) will denote the set of all relatively regular operators.

We shall make use of the following results [1, p. 10]:

1. \(T \in \mathcal{R}(X) \) if and only if \(N(T) \) and \(T(X) \) are closed complemented subspaces of \(X \).
2. If \(TST = T \) for some \(S \in \mathcal{L}(X) \), then \(TS \) is a projection onto \(T(X) \) and \(I - ST \) is a projection onto \(N(T) \).

An operator \(T \) is called an Atkinson operator if \(T \in \mathcal{R}(X) \) and at least one of \(\alpha(T), \beta(T) \) is finite. The set of Atkinson operators will be denoted by \(\mathcal{A}(X) \).

We write \(\mathcal{C}(X) \) for the set of operators having closed range. The class of semi-Fredholm operators is defined by

\[
\mathcal{SF}(X) = \{ T \in \mathcal{C}(X) : \alpha(T) < \infty \text{ or } \beta(T) < \infty \}
\]

We have \(\mathcal{A}(X) \subseteq \mathcal{SF}(X) \). The index of \(T \in \mathcal{SF}(X) \) is given by \(\text{ind}(T) = \alpha(T) - \beta(T) \).

The following result is well known (for proofs see [1] and [3]).

Theorem 1. Let \(T \in \mathcal{A}(X) \) (resp. \(T \in \mathcal{SF}(X) \)). Then there exists \(\delta > 0 \) such that

(a) \(T - B \in \mathcal{A}(X) \) (resp. \(T - B \in \mathcal{SF}(X) \)), \(\alpha(T - B) \leq \alpha(T), \beta(T - B) \leq \beta(T) \) and \(\text{ind}(T - B) = \text{ind}(T) \) for all \(B \in \mathcal{L}(X) \) with \(\|B\| < \delta \);

(b) \(\alpha(T - \lambda I) \) is a constant \(\leq \alpha(T), \beta(T - \lambda I) \) is a constant \(\leq \beta(T) \) for \(0 < |\lambda| < \delta \).

The above theorem shows that \(\mathcal{A}(X) \) and \(\mathcal{SF}(X) \) are open subsets of \(\mathcal{L}(X) \). Furthermore, the continuity of the index shows that the *jump* of \(T \in \mathcal{SF}(X) \)

\[
j(T) = \begin{cases}
\alpha(T) - \alpha(T - \lambda I) & \text{if } \alpha(T) < \infty \\
\beta(T) - \beta(T - \lambda I) & \text{if } \beta(T) < \infty
\end{cases}
\]

is unambiguously defined.
Proposition 1. If \(T \in SF(X) \) then \(j(T) = 0 \iff N(T) \subseteq \bigcap_{n \geq 1} T^n(X) \).

Proof. [14, Proposition 2.2].

We now list various classes of bounded linear operators which will be discussed:

\[SF_0(X) = \{ T \in SF(X) : \alpha(T) = 0 \text{ or } \beta(T) = 0 \} ; \]
\[B(X) = \{ T \in L(X) : N(T) \subseteq T(X) \} ; \]
\[M(X) = \{ T \in L(X) : T \text{ is left or right invertible in } L(X) \} ; \]
\[D(X) = \{ T \in C(X) : N(T) \subseteq \bigcap_{n \geq 1} T^n(X) \} ; \]
\[S(X) = \{ T \in R(X) : N(T) \subseteq \bigcap_{n \geq 1} T^n(X) \} . \]

It is well known that \(M(X) \) is open. \(SF_0(X) \) is open by Theorem 1. An operator in \(S(X) \) is called an operator of Saphar type. Such operators have an important property:

\[T \in S(X) \text{ if and only if there is a neighbourhood } U \subset U \text{ of } 0 \text{ and a holomorphic function } F : U \to L(X) \text{ such that} \]
\[(T - \lambda I)F(\lambda)(T - \lambda I) = T - \lambda I \text{ for all } \lambda \in U. \]

For a proof see [7, Théorème 2.6] or [12, Theorem 1.4].

2 – Interior points of \(D(X) \) and \(S(X) \)

If \(\mathcal{H} \) is a subset of \(L(X) \) we write \(\text{int}(\mathcal{H}) \) for the set of interior points of \(\mathcal{H} \).

Proposition 2. If \(T \in \text{int}(B(X)) \) then \(N(T) = \{0\} \text{ or } T(X) = X. \)
PROOF. There exists $\delta > 0$ such that

$$S \in \mathcal{B}(X) \text{ whenever } ||T - S|| < \delta.$$

Suppose that $N(T) \neq \{0\}$ and $T(X) \neq X$. Then there are $x_0, y_0 \in X$ with $x_0 \neq 0$, $Tx_0 = 0$, $y_0 \notin T(X)$ and $||Ty_0|| = \delta/2$. Since $y_0 \notin T(X)$ and $N(T) \subseteq T(X)$, we have $y_0 \notin N(T)$. An application of the Hahn-Banach extension theorem shows the existence of a continuous linear functional f such that

$$\alpha = f(x_0) \neq 0, \quad f(y_0) = 0 \quad \text{and} \quad ||f|| = 1$$

(see [6, Satz 36.3]). Define $S \in \mathcal{L}(X)$ by

$$Sx = Tx + f(x)Ty_0 \quad (x \in X).$$

It follows that $||Tx - Sx|| = ||f(x)||||Ty_0|| \leq ||x||\delta/2$, thus $||T - S|| < \delta$, hence $S \in \mathcal{B}(X)$. Since $S(X) \subseteq T(X)$, we conclude that

$$N(S) \subseteq T(X).$$

Now put $z = y_0 - x_0/\alpha$. It results that

$$Sz = Ty_0 + f \left(y_0 - \frac{1}{\alpha}x_0\right)Ty_0 = Ty_0 - Ty_0 = 0.$$

This gives $z \in T(X)$, hence $y_0 = z + x_0/\alpha \in T(X) + N(T) = T(X)$ which contradicts $y_0 \notin T(X)$.

It is shown in [10] that neither $D(X)$ nor $S(X)$ are open subsets of $\mathcal{L}(X)$. But the following perturbation results are valid:

\begin{itemize}
 \item Suppose $T \in S(X)$ (resp. $T \in D(X)$), $B \in \mathcal{L}(X)$ and
 \item $B \left(\bigcap_{n=1}^{\infty} T^n(X)\right) \subseteq \bigcap_{n=1}^{\infty} T^n(X)$. If $||B||$ is sufficiently small
 \item then $T - B \in S(X)$ (resp. $T - B \in D(X)$).
\end{itemize}

(For proofs see [1, p. 150] (resp. [10, Corollaire 3.6]).)

Therefore a natural question arises: What are the interior points of $S(X)$ and $D(X)$? The following result gives an answer.
Theorem 2.

(a) \(\text{int}(\mathcal{D}(X)) = \text{int}(\mathcal{B}(X) \cap \mathcal{C}(X)) = \mathcal{SF}_0(X)\).

(b) \(\text{int}(\mathcal{S}(X)) = \text{int}(\mathcal{B}(X) \cap \mathcal{R}(X)) = \mathcal{M}(X)\).

Proof. (a) By Theorem 1 and Proposition 1, \(\mathcal{SF}_0(X) \subseteq \mathcal{D}(X)\). Since \(\mathcal{SF}_0(X)\) is open and \(\mathcal{SF}_0(X) \subseteq \mathcal{D}(X) \subseteq \mathcal{B}(X) \cap \mathcal{C}(X)\), we have

\[
\mathcal{SF}_0(X) \subseteq \text{int}(\mathcal{D}(X)) \subseteq \text{int}(\mathcal{B}(X) \cap \mathcal{C}(X)).
\]

If \(T \in \text{int}(\mathcal{B}(X) \cap \mathcal{C}(X))\) then \(T \in \text{int}(\mathcal{B}(X))\), thus \(a(T) = 0\) or \(b(T) = 0\), by Proposition 2. Since \(T(X)\) is closed, we derive \(T \in \mathcal{SF}_0(X)\).

(b) Since \(\mathcal{M}(X)\) is open and \(\mathcal{M}(X) \subseteq \mathcal{S}(X) \subseteq \mathcal{B}(X) \cap \mathcal{R}(X)\), we have

\[
\mathcal{M}(X) \subseteq \text{int}(\mathcal{S}(X)) \subseteq \text{int}(\mathcal{B}(X) \cap \mathcal{R}(X)).
\]

Let \(T \in \text{int}(\mathcal{B}(X) \cap \mathcal{R}(X))\). There is \(S \in \mathcal{L}(X)\) with \(TST = T\). Proposition 2 shows that \((I - ST)(X) = N(T) = \{0\}\) or \(TS(X) = T(X) = X\), thus \(ST = I\) or \(TS = I\), therefore \(T \in \mathcal{M}(X)\).

Remark. If \(X\) is a Hilbert space, then \(\mathcal{C}(X) = \mathcal{R}(X)\) [1, p. 12], hence \(\mathcal{D}(X) = \mathcal{S}(X)\). In this special case it was shown in [8, Théorème 6.5] that \(\text{int}(\mathcal{D}(X)) = \mathcal{M}(X)\).

Corollary 1. If \(X\) is a Hilbert space then \(\text{int}(\mathcal{S}(X))\) is dense in \(\mathcal{L}(X)\).

Proof. \(\mathcal{M}(X)\) is dense in \(\mathcal{L}(X)\) [4, Problem 140]. Now use Theorem 2.

Corollary 2.

(a) \(\text{int}(\{T \in \mathcal{SF}(X) : j(T) = 0\}) = \mathcal{SF}_0(X)\).

(b) \(\text{int}(\{T \in \mathcal{A}(X) : j(T) = 0\}) = \mathcal{M}(X)\).

Proof. (a) follows from \(\mathcal{SF}_0(X) \subseteq \{T \in \mathcal{SF}(X) : j(T) = 0\} \subseteq \mathcal{D}(X)\) (Proposition 1) and from Theorem 2.

(b) follows from \(\mathcal{M}(X) \subseteq \{T \in \mathcal{A}(X) : j(T) = 0\} \subseteq \mathcal{S}(X)\) and from Theorem 2.
3 – The reduced minimum modulus of operators in $\mathcal{D}(X)$

By definition, the reduced minimum modulus $\gamma(T)$ of $T \in \mathcal{L}(X) \setminus \{0\}$ is given by

$$\gamma(T) = \inf \left\{ \frac{\|Tx\|}{d(x, N(T))} : x \in X, Tx \neq 0 \right\}.$$

($d(x, N(T))$ denotes the distance of x to $N(T)$.) Observe that $\gamma(T) > 0$ if and only if $T \in \mathcal{C}(X)$ [3, Theorem IV. 1.6].

Proposition 3. Let $T \in \mathcal{L}(X)$.

(a) If $T \in \mathcal{D}(X)$ then $T^n \in \mathcal{D}(X)$ for all $n \in \mathbb{N}$.

(b) If $T \in \mathcal{D}(X)$ then $\gamma(T^{n+m}) \geq \gamma(T^n)\gamma(T^m)$ for all $n, m \in \mathbb{N}$.

(c) If $T \in \mathcal{R}(X)$ and $TST = T$ for some $S \in \mathcal{L}(X)$ then $\|S\|^{-1} \leq \gamma(T)$.

(d) If $T \in \mathcal{S}(X)$ and $TST = T$ for some $S \in \mathcal{L}(X)$ then $T^nS^nT^n = T^n$

for each $n \in \mathbb{N}$.

Proof. (a) [11, Satz 6]. (b) [2, Lemma 1]. (c) [2, Lemma 4]. (d) [13, Proposition 2].

We denote by $\sigma(T)$ the spectrum of $T \in \mathcal{L}(X)$ and by $r(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}$ ($= \lim_{n \to \infty} \|T^n\|^{1/n}$) the spectral radius of T. $\partial \sigma(T)$ denotes the boundary of $\sigma(T)$.

Proposition 4. Let $T \in \mathcal{L}(X)$.

(a) If $\mu \in \partial \sigma(T)$ then $T - \mu I \notin \mathcal{D}(X)$.

(b) If $T \in \mathcal{D}(X)$ then

$$\sup_{n \geq 1} \gamma(T^n)^{1/n} \leq \min \{|\mu| : \mu \in \partial \sigma(T)\},$$

the sequence $(\gamma(T^n)^{1/n})_{n \geq 1}$ converges and

$$\lim_{n \to \infty} \gamma(T^n)^{1/n} = \sup_{n \geq 1} \gamma(T^n)^{1/n}.$$

(c) If $T \in \mathcal{S}(X)$ and $TST = T$ for some $S \in \mathcal{L}(X)$ then

$$r(S)^{-1} \leq \lim_{n \to \infty} \gamma(T^n)^{1/n}.$$
PROOF. (a) follows from [11, Satz 2].

(b) Fix \(\mu \in \partial \sigma(T) \) such that \(|\mu| = \min \{|\lambda| : \lambda \in \partial \sigma(T)\} \) and suppose that \(|\mu| < \gamma(T^m)^{1/m} \) for some \(m \in \mathbb{N} \). Thus \(|\mu^m| < \gamma(T^m) \). Since \(T^m \in \mathcal{D}(X) \) (Proposition 3(a)), Théorème 2.10 in [9] gives \(T^m - \mu^m I \in \mathcal{D}(X) \).

[11, Satz 6] implies now that \(T - \mu I \in \mathcal{D}(X) \), but this contradicts (a). Hence \(\gamma(T^m)^{1/m} \leq |\mu| \) for each \(m \in \mathbb{N} \).

(b) follows from [2, remarks in connection with Lemma 1].

(c) By Proposition 3(d), \(T^n S^n T^n = T^n \) for all \(n \in \mathbb{N} \). Part (c) of Proposition 3 implies that \(||S^n||^{-1} \leq \gamma(T^n) \) for each \(n \in \mathbb{N} \), hence

\[
 r(S)^{-1} = \lim_{n \to \infty} \frac{1}{||S^n||^{1/n}} \leq \lim_{n \to \infty} \gamma(T^n)^{1/n}.
\]

The following theorem is another perturbation result for operators in \(\mathcal{D}(X) \) which generalizes Théorème 2.10 in [9].

Theorem 3. If \(T \in \mathcal{D}(X) \), \(B \in \mathcal{L}(X) \), \(TB = BT \) and \(r(B) < \lim_{n \to \infty} \gamma(T^n)^{1/n} \), then \(T - B \in \mathcal{D}(X) \).

Proof. Since \(r(B) = \inf_{k \geq 1} ||B^k||^{1/k} < \sup_{n \geq 1} \gamma(T^n)^{1/n} \), there exists \(k \in \mathbb{N} \) such that \(||B^{k+1}|| < \gamma(T^{k+1}) \). By Proposition 3(a), \(T^{k+1} \in \mathcal{D}(X) \), thus \(T^{k+1} - B^{k+1} \in \mathcal{D}(X) \), by [10, Corollaire 3.6], since \(B \left(\bigcap_{n=1}^{\infty} T^n(X) \right) \subseteq \bigcap_{n=1}^{\infty} T^n(X) \). \(TB = BT \) implies

\[
 T^{k+1} - B^{k+1} = (T - B)(T^k + T^{k-1}B + \cdots + TB^{k-1} + B^k).
\]

Therefore [11, Satz 5] shows that \(T - B \in \mathcal{D}(X) \). □

The next result is proved in [10, Théorème 3.7]. It is now an immediate consequence of the last theorem.

Theorem 4. Let \(T, Q \in \mathcal{L}(X) \). If \(Q \) is quasi-nilpotent and commutes with \(T \), then

\[
 T \in \mathcal{D}(X) \text{ if and only if } T - Q \in \mathcal{D}(X).
\]
We close this paper with a perturbation result concerning operators in $S(X)$. For the proof we need the following proposition.

Proposition 5. If $A, B \in \mathcal{L}(X)$ commute and $AB \in S(X)$, then $A, B \in S(X)$.

Proof. [5, Theorem 10].

Theorem 5. Let $T, Q \in \mathcal{L}(X)$. If Q is quasi-nilpotent and commutes with T, then

$$T \in S(X) \text{ if and only if } T - Q \in S(X).$$

Proof. It suffices to prove the implication $T \in S(X) \implies T - Q \in S(X)$. Put $S \in \mathcal{L}(X)$ such that $TST = T$. By Proposition 3(a),(d), $T^n \in S(X)$ and $T^n S^n T^n = T^n$ for each $n \in \mathbb{N}$. Put $S_n := S^n T^n S^n$ ($n \in \mathbb{N}$). It follows that $T^n S_n T^n = T^n$, $S_n T^n S_n = S_n$ and $||S_n||^{1/n} \leq ||S||^2 ||T||$. There exists $k \in \mathbb{N}$ such that $||Q^{k+1}||^{1/(k+1)} < (||S||^2 ||T||)^{-1}$, thus $||Q^{k+1}|| < ||S_{k+1}||^{-1}$. By [1, Theorem 9 in Section 5.2], $T^{k+1} - Q^{k+1} \in S(X)$. $TQ = QT$ implies

$$T^{k+1} - Q^{k+1} = (T - Q)(T^k + T^{k-1}Q + \cdots + TQ^{k-1} + Q^k),$$

hence $T - Q \in S(X)$, by Proposition 5.

REFERENCES

*Lavoro pervenuto alla redazione il 7 gennaio 1994
ed accettato per la pubblicazione il 13 aprile 1994*