Webrelaunch 2020
Foto von Benjamin Dörich

Dr. Benjamin Dörich

  • Englerstr. 2
    76131 Karlsruhe

Forschungsinteressen

  • Fehleranalyse für Zeit- und Ortsdiksretisierungen
    • Zeitintegration mit exponentiellen Integratoren, Runge–Kutta und Mehrschritt-Verfahren
    • Ortsdikretisierungen mit Finiten Elementen Methoden
    • rigorose Fehlerschranken
  • Konstruktion maßgeschneiderter Methode für spezifische Anwendungen
    • Behandlung nichtlinear Effekte
    • niedrige Regularitätsanforderungen

Preprints

  1. B. Dörich and V. Nikolić: Robust fully discrete error bounds for the Kuznetsov equations in the inviscid limit. Preprint
  2. S. Burkhard, B. Dörich, M. Hochbruck, and C. Lasser: Variational Gaussian approximation for the magnetic Schrödinger equation. Preprint

Publikationen


  1. B. Dörich and P. Henning: Error bounds for discrete minimizers of the Ginzburg-Landau energy in the high-$\kappa$ regime. (Angenommen in SIAM J. Numer. Anal.) Preprint
  2. B. Dörich: Strong norm error bounds for quasilinear wave equations under weak CFL-type conditions. Found. Comput. Math. Link, Preprint
  3. B. Dörich, J. Leibold, and B. Maier: Maximum norm error bounds for the full discretization of non-autonomous wave equations. IMA J. Numer. Anal., drad065 Link, Preprint
  4. B. Dörich and K. Zerulla: Wellposedness and regularity for linear Maxwell equations with surface current. Z. Angew. Math. Phys. 74, 131, 2023 Link, Preprint
  5. B. Dörich, J. Leibold, and B. Maier: Optimal W^{1,\infty}-estimates for an isoparametric finite element discretization of elliptic boundary value problems. Electron. Trans. Numer. Anal., 58:1--21, 2023. Link, Preprint
  6. B. Dörich and M. Hochbruck: Exponential integrators for quasilinear wave-type equations. SIAM J. Numer. Anal., 60(3):1472–1493, 2022. Link, Preprint
  7. B. Dörich and J. Leibold: Full discretization error analysis of exponential integrators for semilinear wave equations. Math. Comp., 91(336):1687–1709, 2022. Link, Preprint
  8. S. Buchholz, B. Dörich, and M. Hochbruck: On averaged exponential integrators for semilinear wave equations with solutions of low-regularity. SN Partial Differ. Equ. Appl., 2(2), 2021. Link, Preprint

Dissertation

B. Dörich: "Error Analysis of Exponential Integrators for Nonlinear Wave-Type Equations".
PhD thesis, Karlsruher Institut für Technologie (KIT), Februar 2021 Link

Aktuelles Lehrangebot
Semester Titel Typ
Wintersemester 2023/24 Vorlesung
Sommersemester 2023 Vorlesung
Sommersemester 2022 Seminar
Wintersemester 2021/22 Vorlesung
Wintersemester 2020/21 Vorlesung
Wintersemester 2019/20 Vorlesung
Sommersemester 2018 Vorlesung