Webrelaunch 2020

Numerical Methods for Hyperbolic Equations (Summer Semester 2019)

Master Mathematics, Technical Mathematics, Economical Mathematics

We present basic theory for equations in conservation form and the fundamental principle to derive numerical methods. As an application we focus on compressible flow equations and Maxwell equations.

Requirements: Numerical methods for Differential Equations.

Exercises and helpful course materials can be found here: ILIAS

Introductionary course

There will be a short course in 'Basics in Finite Elements' and 'Solving Linear Equations' by Dr. Anzt and me. It is a course in the new KIT-Centre MATHSEE and is designed for engineers. This course will replace the dates in the first week and is recommended as an introduction.

Dates: Wed/Thu 24./25.4.2019, 14:00-17:15.

Lecture: Monday 11:30-13:00 SR 3.61 Begin: 29.4.2019, End: 24.7.2019
Tuesday 11:30-13:00 (every 2nd week) SR 3.61
Problem class: Tuesday 11:30-13:00 (every 2nd week) SR 3.61 Begin: 8.5.2019, End: 24.7.2019
Lecturer, Problem classes Prof. Dr. Willy Dörfler
Office hours: Thursday, 15:45-16:30 (for changes see German page below).
Room 3.013 Kollegiengebäude Mathematik (20.30)
Email: willy.doerfler at kit.edu
Problem classes M. Sc. Mariia Molochkova
Office hours: Wednesday, 14:00 - 15:00
Room 3.010 Kollegiengebäude Mathematik (20.30)
Email: mariia.molochkova@kit.edu


Derivation of equations in conservation form. Shocks, Rarefaction waves, weak solutions. Aspects of existence and regularity theory. Discretization of conservation laws with Finite Volume and Discontinuous Galerkin Methods Applications.


Examination: Oral examination.

6 LP


  • J. S. Hesthaven: Numerical Methods for Conservation Laws
  • J. S. Hesthaven, T. Warburton: Nodal discontinuous Galerkin methods
  • D. Kröner: Numerical Schemes for Conservation Laws
  • R. Leveque: Numerical Methods for Conservation Laws