Webrelaunch 2020

Numerical Methods for Hyperbolic Equations (Wintersemester 2014/15)

Master Mathematics, Technical Mathematics, Economical Mathematics

We present basic theory for equations in conservation form and the fundamental principle to derive numerical methods. As an application we focus on compressible flow equations and Maxwell equations.

Requirements: Numerical methods for Differential Equations.

The lectures starts 21.10. Rooms are 1C-01 and 1C-02 since we have not moved to the new building.

Termine
Vorlesung: Mittwoch 11:30-13:00 1C-02
Mittwoch 11:30-13:00 SR 3.60
Übung: Dienstag 15:45-17:15 1C-01
Dienstag 15:45-17:15 SR 3.60
Lehrende
Dozent, Übungsleiter Prof. Dr. Willy Dörfler
Sprechstunde: Dienstags, 15:30-16:30 Uhr oder nach Vereinbarung.
Zimmer 3.013 Kollegiengebäude Mathematik (20.30)
Email: willy.doerfler at kit.edu
Übungsleiter Dr. Stefan Findeisen
Sprechstunde: keine
Zimmer 3.010 Kollegiengebäude Mathematik (20.30)
Email: stefan.findeisen@kit.edu

Inhalt

Derivation of equations in conservation form Shocks, Rarefaction waves, weak solutions Aspects of existence and regularity theory Discretization of conservation laws with Finite Volume and Discontinuous Galerkin Methods Applications

Prüfung

Examination: Oral examination.

6 LP

Literaturhinweise

J. S. Hesthaven, T. Warburton: Nodal discontinuous Galerkin methods

D. Kröner: Numerical Schemes for Conservation Laws

R. Leveque: Numerical Methods for Conservation Laws