Numerical Methods for Hyperbolic Equations (Sommersemester 2019)
- Dozent*in: Prof. Dr. Willy Dörfler
- Veranstaltungen: Vorlesung (0160800), Übung (0160810)
- Semesterwochenstunden: 3+1
Master Mathematics, Technical Mathematics, Economical Mathematics
We present basic theory for equations in conservation form and the fundamental principle to derive numerical methods. As an application we focus on compressible flow equations and Maxwell equations.
Requirements: Numerical Methods for Differential Equations.
Exercises and helpful course materials can be found here: ILIAS
Introductionary course
There will be a short course in 'Basics in Finite Elements' and 'Solving Linear Equations' by Dr. Anzt and me. It is a course in the new KIT-Centre MATHSEE and is designed for engineers. This course will replace the dates in the first week and is recommended as an introduction.
Basics in Discretisations of PDEs. Dates: Wed/Thu 24./25.4.2019, 14:00-17:15.
Termine | |||
---|---|---|---|
Vorlesung: | Montag 11:30-13:00 | SR 3.61 | Beginn: 29.4.2019, Ende: 24.7.2019 |
Dienstag 11:30-13:00 (14-tägig) | SR 3.61 | ||
Übung: | Dienstag 11:30-13:00 (14-tägig) | SR 3.61 | Beginn: 8.5.2019, Ende: 24.7.2019 |
Lehrende | ||
---|---|---|
Dozent, Übungsleiter | Prof. Dr. Willy Dörfler | |
Sprechstunde: Dienstags, 14:30-15:30 Uhr oder nach Vereinbarung. | ||
Zimmer 3.013 Kollegiengebäude Mathematik (20.30) | ||
Email: willy.doerfler at kit.edu | Übungsleiterin | M.Sc. Mariia Sukhova |
Sprechstunde: nach Vereinbarung | ||
Zimmer 3.010 Kollegiengebäude Mathematik (20.30) | ||
Email: mariia.sukhova@kit.edu |
Inhalt
Derivation of equations in conservation form. Shocks, Rarefaction waves, weak solutions. Aspects of existence and regularity theory. Discretization of conservation laws with Finite Volume and Discontinuous Galerkin Methods Applications.
Prüfung
Examination: Oral examination.
6 LP
Literaturhinweise
- J. S. Hesthaven: Numerical Methods for Conservation Laws
- J. S. Hesthaven, T. Warburton: Nodal discontinuous Galerkin methods
- D. Kröner: Numerical Schemes for Conservation Laws
- R. Leveque: Numerical Methods for Conservation Laws