Remark: The error increases when γ decreases. But if the triangulation is chosen in such a way that $\frac{\gamma}{3} \leq C$ for all triangles, then we obtain

$$\|v - \bar{v}\|_{H^2(\Omega)} \leq C \|v\|_{H^2(\Omega)} \quad \forall \bar{v}, \forall v \in H^2(\Omega)$$

Hence, triangles with small angles should be avoided.

Next step: Bound for the interpolation error in $H \cdot H_2(\Omega)$

Lemma 6.4

Under the assumptions of Lemma 6.3, we have

$$\|v - \bar{v}\|_{L_2(\Omega)} \leq C \|v\|_{H^2(\Omega)} \quad \forall \bar{v} \in H^2(\Omega)$$

Proof:

(a) Reference triangle $\hat{\Omega}$, smooth function

For $v \in C^\infty(\hat{\Omega})$ and $\mathbf{x} = (x,y) \in \hat{\Omega}$, we have

$$v(\mathbf{x}) - v(0) = \int_0^1 \frac{d}{dt} v(t \mathbf{x}) dt = \int_0^1 \sqrt{\mathbf{\nabla} v(t \mathbf{x})^T \mathbf{x}} dt$$

integrating by parts

$$= \left[\mathbf{\nabla} v(t \mathbf{x})^T \mathbf{x} \right]_0^1 - \int_0^1 \mathbf{x} \mathbf{\nabla}^2 v(t \mathbf{x})^T \mathbf{x} dt$$

$$= \mathbf{\nabla} v(0)^T \mathbf{x}$$
The corresponding equation for \(\hat{\nabla} \) reads

\[
\hat{\nabla} \nu(\xi) - \hat{\nabla}(0) = (\nabla)^{-1} \hat{\nabla} \nu(\xi) \nabla \xi
\]

because \(\hat{\nabla} \nu \in \mathcal{H}_2(\hat{\Gamma}) \), and hence \(\nabla^2 \hat{\nabla} \nu = 0 \).

\[
\Rightarrow \| \nabla - \hat{\nabla} \|_{L^2(\Omega)} \leq \| \nabla \nu - \hat{\nabla} \nu \|_{L^2(\Omega)} + \left(\int_0^1 \left(\int_{\Gamma} \left(\nabla^2 \nu(\xi) \right)^2 d\xi \right) d\tau \right)^{1/2}
\]

(\(*\ast\))

For every \(z \in \mathbb{R}^2 \) with \(k_2 H \leq 1 \) and every symmetric \(M \in \mathbb{R}^{2 \times 2} \) we have that

\[
|z^TMz| \leq \|z\|_F \cdot \|Mz\|_F \leq \|M\|_F \cdot \|z\| = \|M\|_F
\]

Apply this with \(z \leftrightarrow \xi \) and \(M \leftrightarrow \nabla^2 \nu(\xi) \) to the second term:

\[
\int_0^1 \left(\int_{\Gamma} \left(\nabla^2 \nu(\xi) \right)^2 d\xi \right) d\tau \leq \| \nabla^2 \nu(\xi) \|_F^2
\]

\[
\phi = \xi \Rightarrow \int_0^1 \int \| \nabla^2 \nu(\xi) \|_F^2 d\xi d\tau \\
= \int_0^1 \int \| \nabla^2 \nu(\xi) \|_F^2 d\tau d\xi \\
d\xi = d^2 d\xi
\]

\[
= \int \int \| \nabla^2 \nu(\xi) \|_F^2 d\xi d\tau \leq C \| \nabla \nu \|^2_{H^2(\Gamma)}
\]

Substituting into the inequality (\(*\ast\)) gives

\[
\| \nabla - \hat{\nabla} \|_{L^2(\Omega)} \leq \| \nabla \nu - \hat{\nabla} \nu \|_{L^2(\Omega)} + C \| \nabla \nu \|_{H^2(\hat{\Gamma})} \leq C \| \nabla \nu \|_{H^2(\Omega)}
\]

\[
= \| \nabla - \hat{\nabla} \|_{H^2(\Omega)} \leq C \| \nabla \nu \|_{H^2(\Omega)}
\]

Lemma 6.2.
(6) Arbitrary triangle K, smooth u

Via the transform $\phi_K : \hat{K} \to K$, $\phi_K : (\xi) \mapsto \rho + \xi$, it can be shown that

$$||v - \Pi v||_{L^2(K)} \leq C h^2 ||v||_{H^2(K)}$$

(exercise, use (a) and proceed as in the proof of Lemma 6.3)

(c) It can be shown that $\Pi : H^2(K) \to C^0(K)$ is continuous.

Via a density argument, the assertion follows for all $v \in H^2(K)$.

All in all, we have proven the following result.

Theorem 6.5

Let u be the solution of the elliptic boundary value problem described in Section 5. Let u_h be the approximation obtained by the Goldman ansatz with piecewise linear elements on a triangulation \mathcal{T}_h.

For every $K \in \mathcal{T}_h$, we assume that $\text{diam}(K) \leq h$ and that the radius of the inner circle is not smaller than δ.

If $\frac{h}{\delta} \leq \text{const}$ and if $u \in H^2(\hat{K})$, then the error bound

$$||u - u_h||_{H^1(K)} \leq C h ||u||_{H^2(K)}$$

holds with a constant C independent of u, h, and \mathcal{T}_h.

Proof: Combine Lemma 6.3 and 6.4 with the arguments from Section 5.
Next goal: Error bound in $\| \cdot \|_{L^2(\Omega)}$ instead of $\| \cdot \|_{H^2(\Omega)}$.

Problem: The strategy from Section 5 does not work, because $\| \cdot \|_{L^2(\Omega)}$ is not equivalent to the energy norm $\| \cdot \|_E$.

Definition 6.6

The variational problem

Find $u \in V$ such that $a(u,v) = \int f v \, dx \quad \forall v \in V$

is called H^2-regular if for every $f \in L^2(\Omega)$ the solution u is in $H^2(\Omega) \cap V$ and

$$\| u \|_{H^2(\Omega)} \leq C_2 \| f \|_{L^2(\Omega)}$$

with a constant C_2 independent of f.

It can be shown that the problem is H^2-regular if Ω is convex or has C^2-boundary and either pure Dirichlet or Neumann boundary conditions are posed.

Theorem 6.7

Consider the same situation as in Theorem 6.5 and assume in addition that the boundary value problem is H^2-regular. Then, the error bound

$$\| u - u_h \|_{L^2(\Omega)} \leq C_1 \| u \|_{H^2(\Omega)}$$

holds with a constant C_1 independent of u, h and f_h.