(c) Eigenschaften des Störmer-Verlet-Verfahrens

C. Störmer (1907), C. Verlet (1967)

"Leap-frog Scheme"

Allgemein ODE zweiter Ordnung (Newtonsche Bewegungsgleichung)

\[\ddot{u}(t) = f(u) \]

Störmer-Verlet:

\[\frac{u_{n+2} - 2u_n + u_{n-1}}{\Delta t^2} = F(u_n) \]

Äquivalent: Umformulierung als System erster Ordnung

\[\begin{cases} \dot{u}(t) = v(t) \\ \dot{v}(t) = f(u(t)) \end{cases} \]

Störmer-Verlet:

\[\begin{align*}
V_{n+1/2} &= V_n + \frac{\Delta t}{2} F(u_n) \\
U_{n+1} &= U_n + \Delta t V_{n+1/2} \\
V_{n+1} &= V_n + \frac{\Delta t}{2} F(u_{n+1})
\end{align*} \]

Im Fall der raumdiskretisierten Wellengleichung

\[\begin{cases} \dot{u}(t) = v(t) \\ \dot{v}(t) = A u(t) \end{cases} \]

(schiefe u,v statt z,t)

gilt \[F(u) = A u \] mit \[A = A_{\Delta x} = \frac{1}{\Delta x} \begin{pmatrix} \frac{-2}{\Delta x^2} & 1 \\ 1 & -\frac{2}{\Delta x^2} \end{pmatrix} = Q \Lambda Q^T \]

\[Q \text{ orthogonell, } \Lambda \text{ diagonal} \]

Definiere transformierte Variablen

\[\begin{align*}
\tilde{q}(t) &= \sqrt{-\Lambda} Q^T u(t) \\
\tilde{p}(t) &= Q^T v(t)
\end{align*} \]

Dann ist \(\tilde{q}, \tilde{p} \) Lösung von

\[\begin{cases} \dot{\tilde{q}}(t) = \sqrt{-\Lambda} Q^T u(t) = \sqrt{-\Lambda} \tilde{q} v(t) = \sqrt{-\Lambda} \tilde{p}(t) \\ \dot{\tilde{p}}(t) = Q^T v(t) = Q^T (Q \Lambda Q^T) u(t) = -\sqrt{-\Lambda} \tilde{q}(t) \end{cases} \]

und das Diagramm konvergiert.

folgende
\[
\begin{align*}
\begin{cases}
\dot{u}(t) &= v(t) \\
\dot{v}(t) &= u(t)
\end{cases} & \Rightarrow & \\
\text{Transformation} & \Rightarrow & \\
\begin{cases}
\dot{q}(t) &= \sqrt{-\lambda} \rho(t) \\
\dot{\rho}(t) &= -\sqrt{-\lambda} q(t)
\end{cases} & \Rightarrow & \\
\text{Transformation} & \Rightarrow & \\
\begin{cases}
\dot{q}(t) &= M \rho(t) \\
\dot{\rho}(t) &= -\mu q(t)
\end{cases}
\end{align*}
\]

Das \(\sqrt{-\lambda}\) eine Diagonalmatrix ist, gibt es keine Kopplung zwischen verschiedenen Eingriffen von \(q\) bzw. \(\rho\). Wir betrachten daher die \(s\)-gleiche \(\text{ODE}\):

\[
\begin{align*}
\dot{q}(t) &= \mu \rho(t) \\
\dot{\rho}(t) &= -\mu q(t)
\end{align*}
\]

\(\text{Störung-Verlet zugeordnet auf (C):}\)

\[
\begin{align*}
\begin{pmatrix}
q_{n+1/2} \\
\rho_{n+1/2}
\end{pmatrix} &= \begin{pmatrix}
\frac{1}{2} \\
\frac{1}{2}
\end{pmatrix} \begin{pmatrix}
q_n \\
\rho_n
\end{pmatrix} + \begin{pmatrix}
\frac{1}{2} \mu \\
\frac{1}{2} \mu
\end{pmatrix} \begin{pmatrix}
q_{n+1} \\
\rho_{n+1}
\end{pmatrix}
\end{align*}
\]

bzw äquivalent

\[
\begin{pmatrix}
q_{n+1} \\
\rho_{n+1}
\end{pmatrix} = \begin{pmatrix}
\frac{1}{2} & 0 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
q_n \\
\rho_n
\end{pmatrix} + \begin{pmatrix}
\frac{1}{2} \mu & 0 \\
0 & \frac{1}{2} \mu
\end{pmatrix} \begin{pmatrix}
q_{n+1} \\
\rho_{n+1}
\end{pmatrix}
\]

\[
\begin{pmatrix}
q_{n+1} \\
\rho_{n+1}
\end{pmatrix} = \begin{pmatrix}
q_{n+1/2} \\
\rho_{n+1/2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
q_{n+1} \\
\rho_{n+1}
\end{pmatrix} = \begin{pmatrix}
q_n \\
\rho_n
\end{pmatrix} + \begin{pmatrix}
\frac{1}{2} \mu & 0 \\
0 & \frac{1}{2} \mu
\end{pmatrix} \begin{pmatrix}
q_{n+1} \\
\rho_{n+1}
\end{pmatrix}
\]

\[
\begin{pmatrix}
q_{n+1} \\
\rho_{n+1}
\end{pmatrix} = \begin{pmatrix}
q_{n+1/2} \\
\rho_{n+1/2}
\end{pmatrix}
\]
Matrixmultiplikation liefert
\[
\begin{pmatrix}
q_{n+1} \\
p_{n+1}
\end{pmatrix} =
\begin{pmatrix}
5 & 1 \\
2 & 4
\end{pmatrix}
\begin{pmatrix}
q_n \\
p_n
\end{pmatrix} =
\begin{pmatrix}
5 q_n + p_n \\
2 q_n + 4 p_n
\end{pmatrix}
\]
mit
\(d = \mu h \),
\(b = 5 - \frac{d^2}{2} \).

Untersuche Stabilität, d.h. Eigenwerte der Propagationsmatrix.

Charakteristisches Polynom:
\[
\begin{align*}
\Delta &= (5-\alpha)^2 - \alpha^2 \left(\frac{d^2}{4} - 1 \right) \\
&= \alpha^2 - 25 \alpha + b^2 = \frac{d^4}{4} + d^2 \\
&= \alpha^2 - 25 \alpha + 1
\end{align*}
\]

Falls \(|\Delta| > 1 \):
\[
\alpha_{1,2} = b \pm \sqrt{b^2 - 1}
\]
\[
\Rightarrow |\alpha_1| > 1 \text{ oder } |\alpha_2| > 1
\]
\[
\Rightarrow \text{Verfahren ist instabil.}
\]

Falls \(|\Delta| \leq 1 \):
\[
\alpha_{1,2} = b \pm \sqrt{1 - b^2}
\]
\[
\Rightarrow |\alpha_1| = |\alpha_2| = \sqrt{b^2 + (1 - b^2)} = 1
\]
\[
\Rightarrow \text{Stabilität}
\]

Wegen
\(b = 1 - \frac{d^2}{2} = 1 - \frac{\mu^2 h^2}{2} \)
\(\Rightarrow \)
\(1 b < 1 \iff b \geq -1 \iff h \leq \frac{2}{\mu} \)

Wegen \(\mu < \frac{2}{\Delta x} \) (siehe (c)) erhalten wir die Stabilitätsbedingung
\[
|h| \leq \Delta x \|
\]

Wir haben also bewiesen:
Satz 4.4 (Stabilität des Störer-Verlet-Verfahrens)

Das Störer-Verlet-Verfahren zur Lösung der raumverschmierten Wellengleichung \(u_t + c^2 \Delta u = f \) ist bei beliebigen Anfangsdaten stabil, wenn die Schrittweite der Stabilitätsbedingung

\[h \leq \Delta x \]

erfüllt.

Bemerkungen:

- Im Fall der Wellengleichung \(\frac{d^2 u}{dt^2} + \Delta u = f \) erhält man die Bedingung \(h = \Delta x \).

- Es ist relativ schwierig, ob in der numerischen Beispiele beachtliche approximative Ermittlung der Energien zu bewerten.

Stichwörter: Hamilton-System, symplektisches Verfahren, backward error analysis

Satz 4.5 (Ordnung des Störer-Verlet-Verfahrens)

Das Störer-Verlet-Verfahren

\[
\begin{align*}
v_{n+1/2} &= v_n + \frac{h}{2} F(u_n) \\
u_{n+1} &= u_n + h v_{n+1/2} \\
v_{n+1} &= v_{n+1/2} + \frac{h}{2} F(u_{n+1})
\end{align*}
\]

zur Lösung der ODE \(\dot{u}(t) = v(t) \), \(\ddot{v}(t) = F(u(t)) \)

ist die Ordnung 2.

Folgerung: Für hinreichend kleine Schrittweiten (Stabilität!) gilt für den globalen Fehler die Abschätzung

\[
\| (v_n) - (v(n+1)) \| \leq C \cdot h^2, \quad C = C(\text{end}, \delta)
\]

für alle \(n = 0, \ldots, N \), \(h = \frac{\text{end}}{N} \).
Satz 46 (Fehlerabschätzung für Raum- und Zeitdiskretisierung)

Sei $u(t,x)$ und $v(t,x)$ die Lösung des Anfang-Randwertproblems

(3a) $\frac{\partial u(t,x)}{\partial t} = v(t,x) \quad A \in \mathbb{R}^2, x \in (0,\pi)$

(3b) $u(0,x) = f(x) \quad \forall x \in [0,\pi]$\]

(3c) $u(t,0) = u(t,\pi) = 0 \quad A \in \mathbb{R}^2, t \in \mathbb{R}_+$

Sei $u_n, v_n \in \mathbb{R}^{m \times n}$ die numerische Approximation durch finite Differenzen im Raum und Störterm-Verlust in der Zeit.
Falls die Lösung hinreichend regulär ist und die Schrittweite der Stabilitätsbedingung $h \leq \Delta x$ erfüllt, so gilt die Abschätzung

$$\sqrt{\| \tilde{u}(t_n) - u_n \|^2 + \| \nabla \tilde{u}(t_n) - \nabla u_n \|^2} \leq C (h^2 + \Delta x^2)$$

für alle $n = 0, \ldots, N$, wobei $h = \frac{k}{a^2}$, $\Delta x = \frac{\pi}{a}$,

$$\tilde{u}(t_n) = \begin{pmatrix} u(t_n, x_1) & \cdots & u(t_n, x_{K-1}) \end{pmatrix}^T, \quad \nabla \tilde{u}(t_n) = \begin{pmatrix} v(t_n, x_1) & \cdots & v(t_n, x_{K-1}) \end{pmatrix}^T.$$

Bemerkung:
Ersetzt man (3c) durch die periodischen Randbedingungen

$$u(t, 0) = u(t, \pi), \quad v(t, 0) = v(t, \pi)$$

und wählt man $h = \Delta x$, so liefert das Verfahren die exakte Lösung ("magic time-step").

M. Ausblick

Vorteile von finiten Differenzen:

- Konzeptuell einfach (Theorie und Implementierung)

Nachteile von finiten Differenzen

- Anpassung an allgemeine Geometrie und Rand ist mühosam
- Diskretisierungswirksum ist in allgemeinen nicht symmetrisch und negativ bzw. positiv definit

Diese Nachteile gehen durch die Methode der finiten Elemente weitgehend verloren werden.